These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37495310)
1. Asphyxiation of Metarhizium robertsii during mycelial growth produces conidia with increased stress tolerance via increased expression of stress-related genes. Silva AM; Pedrini N; Pupin B; Roberts DW; Rangel DEN Fungal Biol; 2023; 127(7-8):1209-1217. PubMed ID: 37495310 [TBL] [Abstract][Full Text] [Related]
2. Conidiation under illumination enhances conidial tolerance of insect-pathogenic fungi to environmental stresses. Dias LP; Souza RKF; Pupin B; Rangel DEN Fungal Biol; 2021 Nov; 125(11):891-904. PubMed ID: 34649676 [TBL] [Abstract][Full Text] [Related]
3. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Rangel DE; Anderson AJ; Roberts DW Mycol Res; 2008 Nov; 112(Pt 11):1362-72. PubMed ID: 18938068 [TBL] [Abstract][Full Text] [Related]
4. Low- or high-white light irradiance induces similar conidial stress tolerance in Metarhizium robertsii. Dias LP; Pupin B; Roberts DW; Rangel DEN Arch Microbiol; 2021 Dec; 204(1):83. PubMed ID: 34958400 [TBL] [Abstract][Full Text] [Related]
5. Transient anoxia during Metarhizium robertsii growth increases conidial virulence to Tenebrio molitor. Oliveira AS; Rangel DEN J Invertebr Pathol; 2018 Mar; 153():130-133. PubMed ID: 29530642 [TBL] [Abstract][Full Text] [Related]
6. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Dias LP; Pedrini N; Braga GUL; Ferreira PC; Pupin B; Araújo CAS; Corrochano LM; Rangel DEN Fungal Biol; 2020 May; 124(5):263-272. PubMed ID: 32389288 [TBL] [Abstract][Full Text] [Related]
7. Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. Rangel DE; Fernandes EK; Braga GU; Roberts DW FEMS Microbiol Lett; 2011 Feb; 315(2):81-6. PubMed ID: 21204917 [TBL] [Abstract][Full Text] [Related]
8. Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance. Rangel DE; Fernandes ÉK; Anderson AJ; Roberts DW Fungal Biol; 2012 Mar; 116(3):438-42. PubMed ID: 22385625 [TBL] [Abstract][Full Text] [Related]
9. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Rangel DE; Braga GU; Fernandes ÉK; Keyser CA; Hallsworth JE; Roberts DW Curr Genet; 2015 Aug; 61(3):383-404. PubMed ID: 25791499 [TBL] [Abstract][Full Text] [Related]
10. Serendipity in the wrestle between Trichoderma and Metarhizium. Medina EQA; Oliveira AS; Medina HR; Rangel DEN Fungal Biol; 2020 May; 124(5):418-426. PubMed ID: 32389304 [TBL] [Abstract][Full Text] [Related]
11. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes. Pereira-Junior RA; Huarte-Bonnet C; Paixão FRS; Roberts DW; Luz C; Pedrini N; Fernandes ÉKK J Appl Microbiol; 2018 Jul; 125(1):159-171. PubMed ID: 29473986 [TBL] [Abstract][Full Text] [Related]
12. Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Rangel DE; Alston DG; Roberts DW Mycol Res; 2008 Nov; 112(Pt 11):1355-61. PubMed ID: 18947989 [TBL] [Abstract][Full Text] [Related]
13. Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Oliveira AS; Braga GUL; Rangel DEN Fungal Biol; 2018 Jun; 122(6):555-562. PubMed ID: 29801800 [TBL] [Abstract][Full Text] [Related]
14. Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased UV-B tolerance. Rangel DE; Anderson AJ; Roberts DW J Invertebr Pathol; 2006 Oct; 93(2):127-34. PubMed ID: 16842815 [TBL] [Abstract][Full Text] [Related]
15. Possible source of the high UV-B and heat tolerance of Metarhizium acridum (isolate ARSEF 324). Rangel DEN; Roberts DW J Invertebr Pathol; 2018 Sep; 157():32-35. PubMed ID: 30017952 [TBL] [Abstract][Full Text] [Related]
16. Congo red induces trans-priming to UV-B radiation in Metarhizium robertsii. Licona-Juárez KC; Bezerra AVS; Oliveira ITC; Massingue CD; Medina HR; Rangel DEN Fungal Biol; 2023 Dec; 127(12):1544-1550. PubMed ID: 38097328 [TBL] [Abstract][Full Text] [Related]
17. Conidial mass production of entomopathogenic fungi and tolerance of their mass-produced conidia to UV-B radiation and heat. Rangel DEN; Acheampong MA; Bignayan HG; Golez HG; Roberts DW Fungal Biol; 2023 Dec; 127(12):1524-1533. PubMed ID: 38097326 [TBL] [Abstract][Full Text] [Related]
18. Exposure to a sublethal menadione concentration modifies the mycelial secretome and conidial enzyme activities of Metarhizium anisopliae sensu lato and increases its virulence against Rhipicephalus microplus. Coutinho-Rodrigues CJB; Rosa RLD; Freitas MC; Fiorotti J; Berger M; Santi L; Beys-da-Silva WO; Yates JR; Bittencourt VREP Microbiol Res; 2021 Jul; 248():126753. PubMed ID: 33882376 [TBL] [Abstract][Full Text] [Related]
19. Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress. Azevedo RF; Souza RK; Braga GU; Rangel DE Fungal Biol; 2014 Dec; 118(12):990-5. PubMed ID: 25457946 [TBL] [Abstract][Full Text] [Related]
20. Metarhizium robertsii MrAbaA affects conidial pigmentation via regulating MrPks1 and MrMlac1 expression. Wu H; Tong Y; Wang C; Yu Y; Chen M; Wang Y; Li X; Huang B J Invertebr Pathol; 2023 Mar; 197():107892. PubMed ID: 36720345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]