These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37495315)
41. Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased UV-B tolerance. Rangel DE; Anderson AJ; Roberts DW J Invertebr Pathol; 2006 Oct; 93(2):127-34. PubMed ID: 16842815 [TBL] [Abstract][Full Text] [Related]
42. Tolerance to Abiotic Factors of Microsclerotia and Mycelial Pellets From Paixão FRS; Huarte-Bonnet C; Ribeiro-Silva CS; Mascarin GM; Fernandes ÉKK; Pedrini N Front Fungal Biol; 2021; 2():654737. PubMed ID: 37744155 [No Abstract] [Full Text] [Related]
43. Congo red induces trans-priming to UV-B radiation in Metarhizium robertsii. Licona-Juárez KC; Bezerra AVS; Oliveira ITC; Massingue CD; Medina HR; Rangel DEN Fungal Biol; 2023 Dec; 127(12):1544-1550. PubMed ID: 38097328 [TBL] [Abstract][Full Text] [Related]
44. Comparative transcriptome analysis to unveil genes affecting the host cuticle destruction in Metarhizium rileyi. Fan L; Li X; Li H; Li B; Wang J; He L; Wang Z; Lin Y Curr Genet; 2023 Dec; 69(4-6):253-265. PubMed ID: 37726495 [TBL] [Abstract][Full Text] [Related]
45. Regulation of conidiation, polarity growth, and pathogenicity by MrSte12 transcription factor in entomopathogenic fungus, Metarhizium rileyi. Lin Y; Wang J; Yang K; Fan L; Wang Z; Yin Y Fungal Genet Biol; 2021 Oct; 155():103612. PubMed ID: 34303798 [TBL] [Abstract][Full Text] [Related]
46. The Intermediates in Branched-Chain Amino Acid Biosynthesis Are Indispensable for Conidial Germination of the Insect-Pathogenic Fungus Metarhizium Luo F; Zhou H; Zhou X; Xie X; Li Y; Hu F; Huang B Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769188 [No Abstract] [Full Text] [Related]
47. Fungal tyrosine betaine, a novel secondary metabolite from conidia of entomopathogenic Metarhizium spp. fungi. Carollo CA; Calil AL; Schiave LA; Guaratini T; Roberts DW; Lopes NP; Braga GU Fungal Biol; 2010; 114(5-6):473-80. PubMed ID: 20943158 [TBL] [Abstract][Full Text] [Related]
48. Characterization, identification and virulence of Metarhizium species from Cuba to control the sweet potato weevil, Cylas formicarius Fabricius (Coleoptera: Brentidae). Baró Y; Schuster C; Gato Y; Márquez ME; Leclerque A J Appl Microbiol; 2022 May; 132(5):3705-3716. PubMed ID: 35064983 [TBL] [Abstract][Full Text] [Related]
49. The Xenon Test Chamber Q-SUN Dias LP; Araújo CAS; Pupin B; Ferreira PC; Braga GÚL; Rangel DEN Fungal Biol; 2018 Jun; 122(6):592-601. PubMed ID: 29801804 [TBL] [Abstract][Full Text] [Related]
50. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Dias LP; Pedrini N; Braga GUL; Ferreira PC; Pupin B; Araújo CAS; Corrochano LM; Rangel DEN Fungal Biol; 2020 May; 124(5):263-272. PubMed ID: 32389288 [TBL] [Abstract][Full Text] [Related]
51. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum. Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793 [TBL] [Abstract][Full Text] [Related]
52. Metarhizium robertsii MrAbaA affects conidial pigmentation via regulating MrPks1 and MrMlac1 expression. Wu H; Tong Y; Wang C; Yu Y; Chen M; Wang Y; Li X; Huang B J Invertebr Pathol; 2023 Mar; 197():107892. PubMed ID: 36720345 [TBL] [Abstract][Full Text] [Related]
53. Oleic Acid and Linoleic Acid Enhances the Biocontrol Potential of Wang G; Zhang X; Du G; Wang W; Yao Y; Jin S; Cai H; Peng Y; Chen B J Fungi (Basel); 2024 Jul; 10(8):. PubMed ID: 39194847 [No Abstract] [Full Text] [Related]
54. Fungal dimorphism in the entomopathogenic fungus Metarhizium rileyi: Detection of an in vivo quorum-sensing system. Boucias D; Liu S; Meagher R; Baniszewski J J Invertebr Pathol; 2016 May; 136():100-8. PubMed ID: 27018146 [TBL] [Abstract][Full Text] [Related]
55. Characterisation and evaluation of Chandra Teja KNP; Rahman SJ Mycology; 2016; 7(4):171-179. PubMed ID: 30123629 [TBL] [Abstract][Full Text] [Related]
56. Effect of UV-B Irradiation on Water-Suspended Metarhizium anisopliae s.l. (Hypocreales: Clavicipitaceae) Conidia and Their Larvicidal Activity in Aedes aegypti (Diptera: Culicidae). Falvo ML; Albornoz Medina P; Rodrigues J; López Lastra CC; García JJ; Fernandes ÉKK; Luz C J Med Entomol; 2018 Aug; 55(5):1330-1333. PubMed ID: 29750411 [TBL] [Abstract][Full Text] [Related]
57. Physiological response of Metarhizium rileyi with linoleic acid supplementation. Sánchez-Rey LE; Moreno-Sarmiento N; Grijalba-Bernal EP; Quiroga-Cubides G Fungal Biol; 2024 Jun; 128(4):1827-1835. PubMed ID: 38876535 [TBL] [Abstract][Full Text] [Related]
58. The homeobox transcription factor MrHOX7 contributes to stress tolerance and virulence in the entomopathogenic fungus Metarhizium robertsii. Yang N; Wu H; Tong Y; Liu Z; Li X; Huang B J Invertebr Pathol; 2024 Mar; 203():108071. PubMed ID: 38286328 [TBL] [Abstract][Full Text] [Related]
59. Pathogenicity and in vivo Development of Metarhizium rileyi Against Spodoptera litura (Lepidoptera: Noctuidae) Larvae. Liu S; Xu Z; Wang X; Zhao L; Wang G; Li X; Zhang L J Econ Entomol; 2019 Aug; 112(4):1598-1603. PubMed ID: 31329887 [TBL] [Abstract][Full Text] [Related]
60. Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. Rangel DE; Fernandes EK; Braga GU; Roberts DW FEMS Microbiol Lett; 2011 Feb; 315(2):81-6. PubMed ID: 21204917 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]