BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 37495610)

  • 21. Elraglusib (9-ING-41), a selective small-molecule inhibitor of glycogen synthase kinase-3 beta, reduces expression of immune checkpoint molecules PD-1, TIGIT and LAG-3 and enhances CD8
    Shaw G; Cavalcante L; Giles FJ; Taylor A
    J Hematol Oncol; 2022 Sep; 15(1):134. PubMed ID: 36104795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anticancer natural products targeting immune checkpoint protein network.
    Chun KS; Kim DH; Raut PK; Surh YJ
    Semin Cancer Biol; 2022 Nov; 86(Pt 3):1008-1032. PubMed ID: 34838956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting TIGIT for cancer immunotherapy: recent advances and future directions.
    Zhang P; Liu X; Gu Z; Jiang Z; Zhao S; Song Y; Yu J
    Biomark Res; 2024 Jan; 12(1):7. PubMed ID: 38229100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New Clinical Approaches and Emerging Evidence on Immune-Checkpoint Inhibitors as Anti-Cancer Therapeutics: CTLA-4 and PD-1 Pathways and Beyond.
    Christodoulou MI; Zaravinos A
    Crit Rev Immunol; 2019; 39(5):379-408. PubMed ID: 32422018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PD-1, CTLA-4, LAG-3, and TIGIT: The roles of immune checkpoint receptors on the regulation of human NK cell phenotype and functions.
    Esen F; Deniz G; Aktas EC
    Immunol Lett; 2021 Dec; 240():15-23. PubMed ID: 34599946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immune Co-inhibitory Receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT in Medullary Thyroid Cancers: A Large Cohort Study.
    Shi X; Li CW; Tan LC; Wen SS; Liao T; Zhang Y; Chen TZ; Ma B; Yu PC; Lu ZW; Qu N; Wang Y; Shi RL; Wang YL; Ji QH; Wei WJ
    J Clin Endocrinol Metab; 2021 Jan; 106(1):120-132. PubMed ID: 33000173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TIGIT: A promising target to overcome the barrier of immunotherapy in hematological malignancies.
    Jin S; Zhang Y; Zhou F; Chen X; Sheng J; Zhang J
    Front Oncol; 2022; 12():1091782. PubMed ID: 36605439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma.
    Langhans B; Nischalke HD; Krämer B; Dold L; Lutz P; Mohr R; Vogt A; Toma M; Eis-Hübinger AM; Nattermann J; Strassburg CP; Gonzalez-Carmona MA; Spengler U
    Cancer Immunol Immunother; 2019 Dec; 68(12):2055-2066. PubMed ID: 31724091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy.
    Chiang EY; Mellman I
    J Immunother Cancer; 2022 Apr; 10(4):. PubMed ID: 35379739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TIGIT and PD-1 impair tumor antigen-specific CD8⁺ T cells in melanoma patients.
    Chauvin JM; Pagliano O; Fourcade J; Sun Z; Wang H; Sander C; Kirkwood JM; Chen TH; Maurer M; Korman AJ; Zarour HM
    J Clin Invest; 2015 May; 125(5):2046-58. PubMed ID: 25866972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. T-cell immunoglobulin and ITIM domain in cancer immunotherapy: A focus on tumor-infiltrating regulatory T cells.
    Tian X; Ning Q; Yu J; Tang S
    Mol Immunol; 2022 Jul; 147():62-70. PubMed ID: 35504059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immune escape mechanism behind resistance to anti-PD-1 therapy in gastrointestinal tract metastasis in malignant melanoma patients with multiple metastases.
    Ito M; Mimura K; Nakajima S; Saito K; Min AKT; Okayama H; Saito M; Momma T; Saze Z; Ohtsuka M; Yamamoto T; Kono K
    Cancer Immunol Immunother; 2022 Sep; 71(9):2293-2300. PubMed ID: 35094125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TIGIT-Fc Promotes Antitumor Immunity.
    Shen X; Fu W; Wei Y; Zhu J; Yu Y; Lei C; Zhao J; Hu S
    Cancer Immunol Res; 2021 Sep; 9(9):1088-1097. PubMed ID: 34244300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immune checkpoint targeting TIGIT in hepatocellular carcinoma.
    Zheng Q; Xu J; Gu X; Wu F; Deng J; Cai X; Wang G; Li G; Chen Z
    Am J Transl Res; 2020; 12(7):3212-3224. PubMed ID: 32774695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immune Co-inhibitory Receptors CTLA-4, PD-1, TIGIT, LAG-3, and TIM-3 in Upper Tract Urothelial Carcinomas: A Large Cohort Study.
    Jin S; Shang Z; Wang W; Gu C; Wei Y; Zhu Y; Yang C; Zhang T; Zhu Y; Zhu Y; Wu J; Ye D
    J Immunother; 2023 May; 46(4):154-159. PubMed ID: 37017991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of a novel anti PD-L1 X TIGIT bispecific antibody for the treatment of solid tumors.
    Xiao Y; Chen P; Luo C; Xu Z; Li X; Liu L; Zhao L
    Cancer Treat Res Commun; 2021; 29():100467. PubMed ID: 34598062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TIGIT, the Next Step Towards Successful Combination Immune Checkpoint Therapy in Cancer.
    Ge Z; Peppelenbosch MP; Sprengers D; Kwekkeboom J
    Front Immunol; 2021; 12():699895. PubMed ID: 34367161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy.
    Sun H; Sun C
    Front Immunol; 2019; 10():2354. PubMed ID: 31681269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined Blockade of TIGIT and PD-L1 Enhances Anti-Neuroblastoma Efficacy of GD2-Directed Immunotherapy with Dinutuximab Beta.
    Siebert N; Zumpe M; Schwencke CH; Biskupski S; Troschke-Meurer S; Leopold J; Zikoridse A; Lode HN
    Cancers (Basel); 2023 Jun; 15(13):. PubMed ID: 37444427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.