These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37495716)

  • 1. SALA-LSTM: a novel high-precision maritime radar target detection method based on deep learning.
    Wang J; Li S
    Sci Rep; 2023 Jul; 13(1):12125. PubMed ID: 37495716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Network Model for Detecting Marine Floating Weak Targets Based on Multimodal Data Fusion of Radar Echoes.
    Duan G; Wang Y; Zhang Y; Wu S; Lv L
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MLC-LSTM: Exploiting the Spatiotemporal Correlation between Multi-Level Weather Radar Echoes for Echo Sequence Extrapolation.
    Jing J; Li Q; Peng X
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sea Clutter Suppression and Target Detection Algorithm of Marine Radar Image Sequence Based on Spatio-Temporal Domain Joint Filtering.
    Wen B; Wei Y; Lu Z
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Small Sea-Surface Targets Detection Performance According to Airborne Radar Parameters in Abnormal Weather Environments.
    Bounaceur H; Khenchaf A; Le Caillec JM
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient FPGA Implementation of Convolutional Neural Networks and Long Short-Term Memory for Radar Emitter Signal Recognition.
    Wu B; Wu X; Li P; Gao Y; Si J; Al-Dhahir N
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foreign Object Debris Automatic Target Detection for Millimeter-Wave Surveillance Radar.
    Qin F; Bu X; Liu Y; Liang X; Xin J
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radar Human Activity Recognition with an Attention-Based Deep Learning Network.
    Huan S; Wu L; Zhang M; Wang Z; Yang C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network.
    An Q; Pan Z; You H
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29364194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oil spill detection on X-band marine radar images based on sea clutter fitting model.
    Liu P; Liu B; Li Y; Chen P; Xu J
    Heliyon; 2023 Oct; 9(10):e20893. PubMed ID: 37867849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Maritime Moving Target Detection and Tracking Method for Airborne Forward-looking Scanning Radar.
    Huo W; Pei J; Huang Y; Zhang Q; Yang J
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR.
    Li H; Zhu L; Dai Z; Gong H; Guo T; Guo G; Wang J; Teatini P
    Sci Total Environ; 2021 Dec; 799():149244. PubMed ID: 34365261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Learning-Based Satellite Target Recognition Method Using Radar Data.
    Lu W; Zhang Y; Xu C; Lin C; Huo Y
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subspace Compressive GLRT Detector for MIMO Radar in the Presence of Clutter.
    Bolisetti SK; Patwary M; Ahmed K; Soliman AH; Abdel-Maguid M
    ScientificWorldJournal; 2015; 2015():341619. PubMed ID: 26495422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-attention integrated spatiotemporal LSTM approach to edge-radar echo extrapolation in the Internet of Radars.
    Yang Z; Wu H; Liu Q; Liu X; Zhang Y; Cao X
    ISA Trans; 2023 Jan; 132():155-166. PubMed ID: 35840413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of trapezoidal-shaped overlapping nuclear pulse parameters based on a deep learning CNN-LSTM model.
    Ma XK; Huang HQ; Ji X; Dai HY; Wu JH; Zhao J; Yang F; Tang L; Jiang KM; Ding WC; Zhou W
    J Synchrotron Radiat; 2021 May; 28(Pt 3):910-918. PubMed ID: 33949998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airborne Radar Anti-Jamming Waveform Design Based on Deep Reinforcement Learning.
    Zheng Z; Li W; Zou K
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation of a generalised switching CFAR with application to X-band maritime surveillance radar.
    Weinberg GV
    Springerplus; 2015; 4():574. PubMed ID: 26543709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scene Text Recognition Based on Bidirectional LSTM and Deep Neural Network.
    Kantipudi MP; Kumar S; Kumar Jha A
    Comput Intell Neurosci; 2021; 2021():2676780. PubMed ID: 34858492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sea clutter reduction and target enhancement by neural networks in a marine radar system.
    Vicen-Bueno R; Carrasco-Álvarez R; Rosa-Zurera M; Nieto-Borge JC
    Sensors (Basel); 2009; 9(3):1913-36. PubMed ID: 22573993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.