BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37495868)

  • 1. Hyperhomocysteinemia lowers serum testosterone concentration via impairing testosterone production in Leydig cells.
    Su Z; Liu Z; Lei W; Xia K; Xiao A; Hu Z; Zhou M; Zhu F; Tian J; Yang M; Wang D; Xiang AP; Nie J
    Cell Biol Toxicol; 2023 Dec; 39(6):3077-3100. PubMed ID: 37495868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smad ubiquitylation regulatory factor 1 promotes LIM-homeobox gene 9 degradation and represses testosterone production in Leydig cells.
    Hu F; Zhu Q; Sun B; Cui C; Li C; Zhang L
    FASEB J; 2018 Sep; 32(9):4627-4640. PubMed ID: 29565736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Reprogramming of Mouse Fibroblasts toward Leydig-like Cells by Defined Factors.
    Yang Y; Li Z; Wu X; Chen H; Xu W; Xiang Q; Zhang Q; Chen J; Ge RS; Su Z; Huang Y
    Stem Cell Reports; 2017 Jan; 8(1):39-53. PubMed ID: 28017657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcystin-leucine arginine mediates apoptosis and engulfment of Leydig cell by testicular macrophages resulting in reduced serum testosterone levels.
    Chen Y; Wang J; Chen X; Li D; Han X
    Aquat Toxicol; 2018 Jun; 199():116-126. PubMed ID: 29621671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CREBZF regulates testosterone production in mouse Leydig cells.
    Lu M; Zhang R; Yu T; Wang L; Liu S; Cai R; Guo X; Jia Y; Wang A; Jin Y; Lin P
    J Cell Physiol; 2019 Dec; 234(12):22819-22832. PubMed ID: 31124138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice.
    Wang R; Wang Y; Mu N; Lou X; Li W; Chen Y; Fan D; Tan H
    Lab Invest; 2017 Aug; 97(8):922-934. PubMed ID: 28394319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Severe hyperhomocysteinemia promotes bone marrow-derived and resident inflammatory monocyte differentiation and atherosclerosis in LDLr/CBS-deficient mice.
    Zhang D; Fang P; Jiang X; Nelson J; Moore JK; Kruger WD; Berretta RM; Houser SR; Yang X; Wang H
    Circ Res; 2012 Jun; 111(1):37-49. PubMed ID: 22628578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophage inflammasome mediates hyperhomocysteinemia-aggravated abdominal aortic aneurysm.
    Sun W; Pang Y; Liu Z; Sun L; Liu B; Xu M; Dong Y; Feng J; Jiang C; Kong W; Wang X
    J Mol Cell Cardiol; 2015 Apr; 81():96-106. PubMed ID: 25680906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperhomocysteinemia promotes insulin resistance by inducing endoplasmic reticulum stress in adipose tissue.
    Li Y; Zhang H; Jiang C; Xu M; Pang Y; Feng J; Xiang X; Kong W; Xu G; Li Y; Wang X
    J Biol Chem; 2013 Apr; 288(14):9583-9592. PubMed ID: 23417716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EHD3 positively regulated by NR5A1 participates in testosterone synthesis via endocytosis.
    Zhang L; Ding L; Li Y; Zhang F; Xu Y; Pan H; Wan X; Yan G; Yu F; Li R
    Life Sci; 2021 Aug; 278():119570. PubMed ID: 33964295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional coactivator with PDZ-binding motif suppresses the expression of steroidogenic enzymes by nuclear receptor 4 A1 in Leydig cells.
    Shin JH; Lee G; Jeong MG; Kim HK; Won HY; Choi Y; Lee JH; Nam M; Choi CS; Hwang GS; Hwang ES
    FASEB J; 2020 Apr; 34(4):5332-5347. PubMed ID: 32067268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bisphenol A attenuates testosterone production in Leydig cells via the inhibition of NR1D1 signaling.
    Li C; Zhang L; Ma T; Gao L; Yang L; Wu M; Pang Z; Wang X; Yao Q; Xiao Y; Zhao L; Liu W; Zhao H; Wang C; Wang A; Jin Y; Chen H
    Chemosphere; 2021 Jan; 263():128020. PubMed ID: 33297044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. m
    Chen Y; Wang J; Xu D; Xiang Z; Ding J; Yang X; Li D; Han X
    Autophagy; 2021 Feb; 17(2):457-475. PubMed ID: 31983283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GSNOR modulates hyperhomocysteinemia-induced T cell activation and atherosclerosis by switching Akt S-nitrosylation to phosphorylation.
    Li J; Zhang Y; Zhang Y; Lü S; Miao Y; Yang J; Huang S; Ma X; Han L; Deng J; Fan F; Liu B; Huo Y; Xu Q; Chen C; Wang X; Feng J
    Redox Biol; 2018 Jul; 17():386-399. PubMed ID: 29860106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ERK1/2 pathway regulates testosterone synthesis by coordinately regulating the expression of steroidogenic genes in Leydig cells.
    Matzkin ME; Yamashita S; Ascoli M
    Mol Cell Endocrinol; 2013 May; 370(1-2):130-7. PubMed ID: 23480967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucocorticoids antagonize cAMP-induced Star transcription in Leydig cells through the orphan nuclear receptor NR4A1.
    Martin LJ; Tremblay JJ
    J Mol Endocrinol; 2008 Sep; 41(3):165-75. PubMed ID: 18596066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise mitigates the adverse effects of hyperhomocysteinemia on macrophages, MMP-9, skeletal muscle, and white adipocytes.
    Winchester L; Veeranki S; Givvimani S; Tyagi SC
    Can J Physiol Pharmacol; 2014 Jul; 92(7):575-82. PubMed ID: 24923386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/dCas9-mediated activation of multiple endogenous target genes directly converts human foreskin fibroblasts into Leydig-like cells.
    Huang H; Zou X; Zhong L; Hou Y; Zhou J; Zhang Z; Xing X; Sun J
    J Cell Mol Med; 2019 Sep; 23(9):6072-6084. PubMed ID: 31264792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperhomocysteinemia exaggerates adventitial inflammation and angiotensin II-induced abdominal aortic aneurysm in mice.
    Liu Z; Luo H; Zhang L; Huang Y; Liu B; Ma K; Feng J; Xie J; Zheng J; Hu J; Zhan S; Zhu Y; Xu Q; Kong W; Wang X
    Circ Res; 2012 Oct; 111(10):1261-73. PubMed ID: 22912384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes.
    Shima Y; Miyabayashi K; Haraguchi S; Arakawa T; Otake H; Baba T; Matsuzaki S; Shishido Y; Akiyama H; Tachibana T; Tsutsui K; Morohashi K
    Mol Endocrinol; 2013 Jan; 27(1):63-73. PubMed ID: 23125070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.