BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 37495991)

  • 1. Mitochondrial dysfunction: roles in skeletal muscle atrophy.
    Chen X; Ji Y; Liu R; Zhu X; Wang K; Yang X; Liu B; Gao Z; Huang Y; Shen Y; Liu H; Sun H
    J Transl Med; 2023 Jul; 21(1):503. PubMed ID: 37495991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading.
    Cannavino J; Brocca L; Sandri M; Grassi B; Bottinelli R; Pellegrino MA
    J Physiol; 2015 Apr; 593(8):1981-95. PubMed ID: 25565653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dihydromyricetin Attenuates Dexamethasone-Induced Muscle Atrophy by Improving Mitochondrial Function via the PGC-1α Pathway.
    Huang Y; Chen K; Ren Q; Yi L; Zhu J; Zhang Q; Mi M
    Cell Physiol Biochem; 2018; 49(2):758-779. PubMed ID: 30165349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy.
    Theilen NT; Kunkel GH; Tyagi SC
    J Cell Physiol; 2017 Sep; 232(9):2348-2358. PubMed ID: 27966783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies.
    Kubat GB; Bouhamida E; Ulger O; Turkel I; Pedriali G; Ramaccini D; Ekinci O; Ozerklig B; Atalay O; Patergnani S; Nur Sahin B; Morciano G; Tuncer M; Tremoli E; Pinton P
    Mitochondrion; 2023 Sep; 72():33-58. PubMed ID: 37451353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice.
    Ng SY; Mikhail A; Ljubicic V
    J Physiol; 2019 Sep; 597(18):4757-4778. PubMed ID: 31361024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant effect of human placenta hydrolysate against oxidative stress on muscle atrophy.
    Bak DH; Na J; Im SI; Oh CT; Kim JY; Park SK; Han HJ; Seok J; Choi SY; Ko EJ; Mun SK; Ahn SW; Kim BJ
    J Cell Physiol; 2019 Feb; 234(2):1643-1658. PubMed ID: 30132871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Codonopsis lanceolata and its active component Tangshenoside I ameliorate skeletal muscle atrophy via regulating the PI3K/Akt and SIRT1/PGC-1α pathways.
    Kim TY; Park KT; Choung SY
    Phytomedicine; 2022 Jun; 100():154058. PubMed ID: 35349834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial health and muscle plasticity after spinal cord injury.
    Gorgey AS; Witt O; O'Brien L; Cardozo C; Chen Q; Lesnefsky EJ; Graham ZA
    Eur J Appl Physiol; 2019 Feb; 119(2):315-331. PubMed ID: 30539302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial dysfunction in skeletal muscle of fukutin-deficient mice is resistant to exercise- and 5-aminoimidazole-4-carboxamide ribonucleotide-induced rescue.
    Southern WM; Nichenko AS; Qualls AE; Portman K; Gidon A; Beedle AM; Call JA
    Exp Physiol; 2020 Oct; 105(10):1767-1777. PubMed ID: 32833332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibroblast growth factor 19 alleviates palmitic acid-induced mitochondrial dysfunction and oxidative stress via the AMPK/PGC-1α pathway in skeletal muscle.
    Guo A; Li K; Xiao Q
    Biochem Biophys Res Commun; 2020 Jun; 526(4):1069-1076. PubMed ID: 32305136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. alpha-Lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling in the skeletal muscle of aged mice.
    Wang Y; Li X; Guo Y; Chan L; Guan X
    Metabolism; 2010 Jul; 59(7):967-76. PubMed ID: 20015518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant.
    Talbert EE; Smuder AJ; Min K; Kwon OS; Szeto HH; Powers SK
    J Appl Physiol (1985); 2013 Aug; 115(4):529-38. PubMed ID: 23766499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of PGC-1α signaling in skeletal muscle health and disease.
    Kang C; Li Ji L
    Ann N Y Acad Sci; 2012 Oct; 1271(1):110-7. PubMed ID: 23050972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ampelopsin attenuates the atrophy of skeletal muscle from d-gal-induced aging rats through activating AMPK/SIRT1/PGC-1α signaling cascade.
    Kou X; Li J; Liu X; Yang X; Fan J; Chen N
    Biomed Pharmacother; 2017 Jun; 90():311-320. PubMed ID: 28364603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FGF19 protects skeletal muscle against obesity-induced muscle atrophy, metabolic derangement and abnormal irisin levels via the AMPK/SIRT-1/PGC-α pathway.
    Guo A; Li K; Tian HC; Fan Z; Chen QN; Yang YF; Yu J; Wu YX; Xiao Q
    J Cell Mol Med; 2021 Apr; 25(7):3585-3600. PubMed ID: 33751819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering aspects of mitochondrial quality to improve musculoskeletal outcomes in disuse atrophy.
    Rosa-Caldwell ME; Lim S; Haynie WS; Jansen LT; Westervelt LC; Amos MG; Washington TA; Greene NP
    J Appl Physiol (1985); 2020 Dec; 129(6):1290-1303. PubMed ID: 32940556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PGC-1α overexpression by in vivo transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization.
    Kang C; Goodman CA; Hornberger TA; Ji LL
    FASEB J; 2015 Oct; 29(10):4092-106. PubMed ID: 26178167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paeoniflorin Ameliorates Skeletal Muscle Atrophy in Chronic Kidney Disease
    Li Q; Wu J; Huang J; Hu R; You H; Liu L; Wang D; Wei L
    Front Pharmacol; 2022; 13():859723. PubMed ID: 35370668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the Mitochondria to Locomotor Muscle Dysfunction in Patients With COPD.
    Taivassalo T; Hussain SN
    Chest; 2016 May; 149(5):1302-12. PubMed ID: 26836890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.