These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37496086)

  • 1. Laser Controlled Manipulation of Microbubbles on a Surface with Silica-Coated Gold Nanoparticle Array.
    Li X; Wang F; Xia C; The HL; Bomer JG; Wang Y
    Small; 2023 Dec; 19(49):e2302939. PubMed ID: 37496086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces.
    Zeng B; Chong KL; Wang Y; Diddens C; Li X; Detert M; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stationary bubble formation and Marangoni convection induced by CW laser heating of a single gold nanoparticle.
    Setoura K; Ito S; Miyasaka H
    Nanoscale; 2017 Jan; 9(2):719-730. PubMed ID: 27959376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optothermal generation, trapping, and manipulation of microbubbles.
    Sarabia-Alonso JA; Ortega-Mendoza JG; Ramírez-San-Juan JC; Zaca-Morán P; Ramírez-Ramírez J; Padilla-Vivanco A; Muñoz-Pérez FM; Ramos-García R
    Opt Express; 2020 Jun; 28(12):17672-17682. PubMed ID: 32679972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Microbubble Dynamics in Binary Liquids.
    Li X; Wang Y; Zeng B; Detert M; Prosperetti A; Zandvliet HJW; Lohse D
    J Phys Chem Lett; 2020 Oct; 11(20):8631-8637. PubMed ID: 32960058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Guided Surface Plasmonic Bubble Movement via Contact Line De-Pinning by In-Situ Deposited Plasmonic Nanoparticle Heating.
    Zhang Q; Pang Y; Schiffbauer J; Jemcov A; Chang HC; Lee E; Luo T
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48525-48532. PubMed ID: 31794181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Bubble Growth in Plasmonic Nanoparticle Suspension.
    Zhang Q; Neal RD; Huang D; Neretina S; Lee E; Luo T
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26680-26687. PubMed ID: 32402195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal Bubble Microrobot Near an Air-Water Interface.
    Wang L; Chen L; Zheng X; Yu Z; Lv W; Sheng M; Wang L; Nie P; Li H; Guan D; Cui H
    Small; 2022 Sep; 18(39):e2203872. PubMed ID: 36045100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marangoni force-driven manipulation of photothermally-induced microbubbles.
    Ortega-Mendoza JG; Sarabia-Alonso JA; Zaca-Morán P; Padilla-Vivanco A; Toxqui-Quitl C; Rivas-Cambero I; Ramirez-Ramirez J; Torres-Hurtado SA; Ramos-García R
    Opt Express; 2018 Mar; 26(6):6653-6662. PubMed ID: 29609352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photothermal generation of programmable microbubble array on nanoporous gold disks.
    Li J; Zhao F; Deng Y; Liu D; Chen CH; Shih WC
    Opt Express; 2018 Jun; 26(13):16893-16902. PubMed ID: 30119508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly.
    Zhou Y; Dai L; Jiao N
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared-laser-navigated dancing bubble within water via a thermally conductive interface.
    Hu M; Wang F; Chen L; Huo P; Li Y; Gu X; Chong KL; Deng D
    Nat Commun; 2022 Sep; 13(1):5749. PubMed ID: 36180429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Laser-Induced Microbubbles inside Capillary Tubes Affected by Gathered Light-Absorbing Particles.
    He JW; Wang HD; Li BW; Bai W; Chen D; Zhong MC
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D trapping of microbubbles by the Marangoni force.
    Sarabia-Alonso JA; Ortega-Mendoza JG; Mansurova S; Muñoz-Pérez FM; Ramos-García R
    Opt Lett; 2021 Dec; 46(23):5786-5789. PubMed ID: 34851890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically induced resonance of nanoparticle-loaded microbubbles.
    Dove JD; Borden MA; Murray TW
    Opt Lett; 2014 Jul; 39(13):3732-5. PubMed ID: 24978723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes.
    Salari A; Gnyawali V; Griffiths IM; Karshafian R; Kolios MC; Tsai SSH
    Soft Matter; 2017 Nov; 13(46):8796-8806. PubMed ID: 29135012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically Driven Gold Nanoparticles Seed Surface Bubble Nucleation in Plasmonic Suspension.
    Zhang Q; Li R; Lee E; Luo T
    Nano Lett; 2021 Jul; 21(13):5485-5492. PubMed ID: 33939430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-Optical Formation and Manipulation of Microbubbles on a Porous Gold Nanofilm.
    Cao Q; Wu T; Chen X; Gong Z; Wen A
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32397627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of parameters influencing plasmonic nanoparticle-mediated bubble generation with nanosecond laser pulses.
    Fales AM; Vogt WC; Wear KA; Pfefer TJ; Ilev IK
    J Biomed Opt; 2019 Jun; 24(6):1-10. PubMed ID: 31230425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.