These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37496242)

  • 1. Insight into the Structure and Physicochemical Properties of Potent Chemokine Receptor 5 Inhibitors for the Discovery of Novel Alzheimer's Disease Drugs.
    Mohamed Yusof NIS; Awaluddin NA; Fauzi FM
    Cent Nerv Syst Agents Med Chem; 2023; 23(2):95-108. PubMed ID: 37496242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insight into the role of metformin in Alzheimer's disease.
    Sanati M; Aminyavari S; Afshari AR; Sahebkar A
    Life Sci; 2022 Feb; 291():120299. PubMed ID: 34999113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-Dialkylamino-6-acylmalononitrile substituted naphthalenes (DDNP analogs): novel diagnostic and therapeutic tools in Alzheimer's disease.
    Agdeppa ED; Kepe V; Liu J; Small GW; Huang SC; Petric A; Satyamurthy N; Barrio JR
    Mol Imaging Biol; 2003; 5(6):404-17. PubMed ID: 14667495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid lipid curcumin particles provide greater anti-amyloid, anti-inflammatory and neuroprotective effects than curcumin in the 5xFAD mouse model of Alzheimer's disease.
    Maiti P; Paladugu L; Dunbar GL
    BMC Neurosci; 2018 Feb; 19(1):7. PubMed ID: 29471781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review on Alzheimer's disease: Inhibition of amyloid beta and tau tangle formation.
    Ashrafian H; Zadeh EH; Khan RH
    Int J Biol Macromol; 2021 Jan; 167():382-394. PubMed ID: 33278431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer's disease.
    Takahashi RH; Nagao T; Gouras GK
    Pathol Int; 2017 Apr; 67(4):185-193. PubMed ID: 28261941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Therapy of Alzheimer disease].
    Kovács T
    Neuropsychopharmacol Hung; 2009 Mar; 11(1):27-33. PubMed ID: 19731816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tea polyphenols as multi-target therapeutics for Alzheimer's disease: An in silico study.
    Mazumder MK; Choudhury S
    Med Hypotheses; 2019 Apr; 125():94-99. PubMed ID: 30902161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular insights into the inhibition of early stages of Aβ peptide aggregation and destabilization of Alzheimer's Aβ protofibril by dipeptide D-Trp-Aib: A molecular modelling approach.
    Mohammed AA; Barale SS; Kamble SA; Paymal SB; Sonawane KD
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):124880. PubMed ID: 37217059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical evaluation of current Alzheimer's drug discovery (2018-19) & futuristic Alzheimer drug model approach.
    Dorababu A
    Bioorg Chem; 2019 Dec; 93():103299. PubMed ID: 31586701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytomedicines as potential inhibitors of β amyloid aggregation: significance to Alzheimer's disease.
    Kumar NS; Nisha N
    Chin J Nat Med; 2014 Nov; 12(11):801-18. PubMed ID: 25480511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer's disease: an investigation by docking, molecular dynamics, and DFT studies.
    Azam F; Alabdullah NH; Ehmedat HM; Abulifa AR; Taban I; Upadhyayula S
    J Biomol Struct Dyn; 2018 Jun; 36(8):2099-2117. PubMed ID: 28571516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenylpropanoids and Alzheimer's disease: A potential therapeutic platform.
    Kolaj I; Imindu Liyanage S; Weaver DF
    Neurochem Int; 2018 Nov; 120():99-111. PubMed ID: 30098379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis, in-silico and biological evaluation of novel chalcone-O-carbamate derivatives as multifunctional agents for the treatment of Alzheimer's disease.
    Sang Z; Wang K; Shi J; Liu W; Tan Z
    Eur J Med Chem; 2019 Sep; 178():726-739. PubMed ID: 31229875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypothesis review: Alzheimer's overture guidelines.
    Ferrer I
    Brain Pathol; 2023 Jan; 33(1):e13122. PubMed ID: 36223647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer's disease.
    Cai HY; Yang JT; Wang ZJ; Zhang J; Yang W; Wu MN; Qi JS
    Biochem Biophys Res Commun; 2018 Jan; 495(1):1034-1040. PubMed ID: 29175324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review on Recent Approaches on Molecular Docking Studies of Novel Compounds Targeting Acetylcholinesterase in Alzheimer Disease.
    Peitzika SC; Pontiki E
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of PrP(C) Expression in Tau Protein Levels and Phosphorylation in Alzheimer's Disease Evolution.
    Vergara C; Ordóñez-Gutiérrez L; Wandosell F; Ferrer I; del Río JA; Gavín R
    Mol Neurobiol; 2015; 51(3):1206-20. PubMed ID: 24965601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery.
    Bu XL; Rao PPN; Wang YJ
    Mol Neurobiol; 2016 Aug; 53(6):3565-3575. PubMed ID: 26099310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New compounds from heterocyclic amines scaffold with multitarget inhibitory activity on Aβ aggregation, AChE, and BACE1 in the Alzheimer disease.
    García Marín ID; Camarillo López RH; Martínez OA; Padilla-Martínez II; Correa-Basurto J; Rosales-Hernández MC
    PLoS One; 2022; 17(6):e0269129. PubMed ID: 35657793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.