These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37496436)

  • 1. Correction: Additive manufacturing of barium-doped calcium silicate/poly-ε-caprolactone scaffolds to activate CaSR and AKT signalling and osteogenic differentiation of mesenchymal stem cells.
    Chiu YC; Lin YH; Chen YW; Kuo TY; Shie MY
    J Mater Chem B; 2023 Aug; 11(31):7514-7515. PubMed ID: 37496436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive manufacturing of barium-doped calcium silicate/poly-ε-caprolactone scaffolds to activate CaSR and AKT signalling and osteogenic differentiation of mesenchymal stem cells.
    Chiu YC; Lin YH; Chen YW; Kuo TY; Shie MY
    J Mater Chem B; 2023 May; 11(21):4666-4676. PubMed ID: 37128755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells.
    Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro human adipose-derived stromal/stem cells osteogenesis in akermanite:poly-ε-caprolactone scaffolds.
    Zanetti AS; McCandless GT; Chan JY; Gimble JM; Hayes DJ
    J Biomater Appl; 2014 Mar; 28(7):998-1007. PubMed ID: 23796629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenic potential of human dental pulp stem cells cultured onto poly-ε-caprolactone/poly (rotaxane) scaffolds.
    Oliveira NK; Salles THC; Pedroni AC; Miguita L; D'Ávila MA; Marques MM; Deboni MCZ
    Dent Mater; 2019 Dec; 35(12):1740-1749. PubMed ID: 31543375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocomposite scaffolds composed of Apacite (apatite-calcite) nanostructures, poly (ε-caprolactone) and poly (2-hydroxyethylmethacrylate): The effect of nanostructures on physico-mechanical properties and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro.
    Shams M; Karimi M; Heydari M; Salimi A
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111271. PubMed ID: 32919635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering.
    Dalgic AD; Alshemary AZ; Tezcaner A; Keskin D; Evis Z
    J Biomater Appl; 2018 May; 32(10):1392-1405. PubMed ID: 29544381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction: Bioactive SiO
    Liu Y; Huang N; Yu Y; Zheng C; Deng N; Liu J
    J Mater Chem B; 2016 Jul; 4(28):4941. PubMed ID: 32263153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots.
    Zheng P; Yao Q; Mao F; Liu N; Xu Y; Wei B; Wang L
    Mol Med Rep; 2017 Oct; 16(4):5078-5084. PubMed ID: 28849142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifications in Gene Expression in the Process of Osteoblastic Differentiation of Multipotent Bone Marrow-Derived Human Mesenchymal Stem Cells Induced by a Novel Osteoinductive Porous Medical-Grade 3D-Printed Poly(ε-caprolactone)/β-tricalcium Phosphate Composite.
    López-González I; Zamora-Ledezma C; Sanchez-Lorencio MI; Tristante Barrenechea E; Gabaldón-Hernández JA; Meseguer-Olmo L
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration.
    Averianov I; Stepanova M; Solomakha O; Gofman I; Serdobintsev M; Blum N; Kaftuirev A; Baulin I; Nashchekina J; Lavrentieva A; Vinogradova T; Korzhikov-Vlakh V; Korzhikova-Vlakh E
    J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2422-2437. PubMed ID: 35618683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Effect of Static Magnetic Fields and 3D-Printed Iron-Oxide-Nanoparticle-Containing Calcium Silicate/Poly-ε-Caprolactone Scaffolds for Bone Tissue Engineering.
    Kao CY; Lin TL; Lin YH; Lee AK; Ng SY; Huang TH; Hsu TT
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Osteogenic Differentiation of Periodontal Ligament Stem Cells Using a Graphene Oxide-Coated Poly(ε-caprolactone) Scaffold.
    Park J; Park S; Kim JE; Jang KJ; Seonwoo H; Chung JH
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33807666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic differentiation of rat bone mesenchymal stem cells cultured on poly (hydroxybutyrate-co-hydroxyvalerate), poly (ε-caprolactone) scaffolds.
    Rodrigues AA; Batista NA; Malmonge SM; Casarin SA; Agnelli JAM; Santos AR; Belangero WD
    J Mater Sci Mater Med; 2021 Oct; 32(11):138. PubMed ID: 34716801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro.
    Salerno A; Guarnieri D; Iannone M; Zeppetelli S; Netti PA
    Tissue Eng Part A; 2010 Aug; 16(8):2661-73. PubMed ID: 20687813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells].
    Xu W; Lu H; Ye J; Yang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser Sintered Magnesium-Calcium Silicate/Poly-ε-Caprolactone Scaffold for Bone Tissue Engineering.
    Tsai KY; Lin HY; Chen YW; Lin CY; Hsu TT; Kao CT
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) Blend Scaffolds for Tissue Engineering.
    Puppi D; Morelli A; Chiellini F
    Bioengineering (Basel); 2017 May; 4(2):. PubMed ID: 28952527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.