These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 37496518)
1. Comparative Analysis of Single-cell and Single-nucleus RNA-sequencing in a Rabbit Model of Retinal Detachment-related Proliferative Vitreoretinopathy. Santiago CP; Gimmen MY; Lu Y; McNally MM; Duncan LH; Creamer TJ; Orzolek LD; Blackshaw S; Singh MS Ophthalmol Sci; 2023 Dec; 3(4):100335. PubMed ID: 37496518 [TBL] [Abstract][Full Text] [Related]
2. Mapping the cellular landscape of Atlantic salmon head kidney by single cell and single nucleus transcriptomics. Andresen AMS; Taylor RS; Grimholt U; Daniels RR; Sun J; Dobie R; Henderson NC; Martin SAM; Macqueen DJ; Fosse JH Fish Shellfish Immunol; 2024 Mar; 146():109357. PubMed ID: 38181891 [TBL] [Abstract][Full Text] [Related]
3. Transition to Chronic Fibrosis in an Animal Model of Retinal Detachment With Features of Proliferative Vitreoretinopathy. Peterson C; Lu Y; Santiago CP; Price AC; McNally MM; Schubert W; Nassar K; Zollner T; Blackshaw S; Eberhart CG; Singh MS Invest Ophthalmol Vis Sci; 2023 Dec; 64(15):39. PubMed ID: 38153753 [TBL] [Abstract][Full Text] [Related]
4. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis. Wu H; Kirita Y; Donnelly EL; Humphreys BD J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133 [TBL] [Abstract][Full Text] [Related]
5. Updated skin transcriptomic atlas depicted by reciprocal contribution of single-nucleus RNA sequencing and single-cell RNA sequencing. Zhu R; Pan X; Wang S; Qiu Z; Gu C; Yao X; Li W J Dermatol Sci; 2023 Aug; 111(2):22-31. PubMed ID: 37407342 [TBL] [Abstract][Full Text] [Related]
6. An optimized FACS-free single-nucleus RNA sequencing (snRNA-seq) method for plant science research. Wang K; Zhao C; Xiang S; Duan K; Chen X; Guo X; Sahu SK Plant Sci; 2023 Jan; 326():111535. PubMed ID: 36400127 [TBL] [Abstract][Full Text] [Related]
7. Single-nucleus RNA sequencing of human pancreatic islets identifies novel gene sets and distinguishes β-cell subpopulations with dynamic transcriptome profiles. Kang RB; Li Y; Rosselot C; Zhang T; Siddiq M; Rajbhandari P; Stewart AF; Scott DK; Garcia-Ocana A; Lu G Genome Med; 2023 May; 15(1):30. PubMed ID: 37127706 [TBL] [Abstract][Full Text] [Related]
8. Comparison of cell type distribution between single-cell and single-nucleus RNA sequencing: enrichment of adherent cell types in single-nucleus RNA sequencing. Oh JM; An M; Son DS; Choi J; Cho YB; Yoo CE; Park WY Exp Mol Med; 2022 Dec; 54(12):2128-2134. PubMed ID: 36460793 [TBL] [Abstract][Full Text] [Related]
9. Using single-nucleus RNA-sequencing to interrogate transcriptomic profiles of archived human pancreatic islets. Basile G; Kahraman S; Dirice E; Pan H; Dreyfuss JM; Kulkarni RN Genome Med; 2021 Aug; 13(1):128. PubMed ID: 34376240 [TBL] [Abstract][Full Text] [Related]
10. Single-cell and single-nucleus RNA-sequencing from paired normal-adenocarcinoma lung samples provide both common and discordant biological insights. Renaut S; Saavedra Armero V; Boudreau DK; Gaudreault N; Desmeules P; Thériault S; Mathieu P; Joubert P; Bossé Y PLoS Genet; 2024 May; 20(5):e1011301. PubMed ID: 38814983 [TBL] [Abstract][Full Text] [Related]
11. Single-Cell RNA Sequencing Technology Landscape in 2023. Qu HQ; Kao C; Hakonarson H Stem Cells; 2024 Jan; 42(1):1-12. PubMed ID: 37934608 [TBL] [Abstract][Full Text] [Related]
12. Characterization of transcript enrichment and detection bias in single-nucleus RNA-seq for mapping of distinct human adipocyte lineages. Gupta A; Shamsi F; Altemose N; Dorlhiac GF; Cypess AM; White AP; Yosef N; Patti ME; Tseng YH; Streets A Genome Res; 2022 Feb; 32(2):242-257. PubMed ID: 35042723 [TBL] [Abstract][Full Text] [Related]
13. Quantification and statistical modeling of droplet-based single-nucleus RNA-sequencing data. Kuo A; Hansen KD; Hicks SC Biostatistics; 2024 Jul; 25(3):801-817. PubMed ID: 37257175 [TBL] [Abstract][Full Text] [Related]
14. Proteomic evidence that ABCA4 is vital for traumatic proliferative vitreoretinopathy formation and development. Wang M; Li Q; Dong H Exp Eye Res; 2019 Apr; 181():232-239. PubMed ID: 30738069 [TBL] [Abstract][Full Text] [Related]
15. Changes in retinal gene expression in proliferative vitreoretinopathy: glial cell expression of HB-EGF. Hollborn M; Tenckhoff S; Jahn K; Iandiev I; Biedermann B; Schnurrbusch UE; Limb GA; Reichenbach A; Wolf S; Wiedemann P; Kohen L; Bringmann A Mol Vis; 2005 Jun; 11():397-413. PubMed ID: 15988409 [TBL] [Abstract][Full Text] [Related]
16. Primary Retinal Detachment Repair in Eyes Deemed High Risk for Proliferative Vitreoretinopathy: Surgical Outcomes in 389 Eyes. Salabati M; Massenzio E; Kim J; Awh K; Anderson H; Mahmoudzadeh R; Wakabayashi T; Hsu J; Garg S; Ho AC; Khan MA Ophthalmol Retina; 2023 Nov; 7(11):954-958. PubMed ID: 37453482 [TBL] [Abstract][Full Text] [Related]
17. SU9518 inhibits proliferative vitreoretinopathy in fibroblast and genetically modified Müller cell-induced rabbit models. Velez G; Weingarden AR; Lei H; Kazlauskas A; Gao G Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):1392-7. PubMed ID: 23341018 [TBL] [Abstract][Full Text] [Related]
18. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. Bakken TE; Hodge RD; Miller JA; Yao Z; Nguyen TN; Aevermann B; Barkan E; Bertagnolli D; Casper T; Dee N; Garren E; Goldy J; Graybuck LT; Kroll M; Lasken RS; Lathia K; Parry S; Rimorin C; Scheuermann RH; Schork NJ; Shehata SI; Tieu M; Phillips JW; Bernard A; Smith KA; Zeng H; Lein ES; Tasic B PLoS One; 2018; 13(12):e0209648. PubMed ID: 30586455 [TBL] [Abstract][Full Text] [Related]
19. Identification of kidney cell types in scRNA-seq and snRNA-seq data using machine learning algorithms. Tisch A; Madapoosi S; Blough S; Rosa J; Eddy S; Mariani L; Naik A; Limonte C; McCown P; Menon R; Rosas SE; Parikh CR; Kretzler M; Mahfouz A; Alakwaa F; Heliyon; 2024 Oct; 10(19):e38567. PubMed ID: 39403515 [TBL] [Abstract][Full Text] [Related]
20. Assessment of the integrin alpha5beta1 antagonist JSM6427 in proliferative vitreoretinopathy using in vitro assays and a rabbit model of retinal detachment. Zahn G; Volk K; Lewis GP; Vossmeyer D; Stragies R; Heier JS; Daniel PE; Adamis AP; Chapin EA; Fisher SK; Holz FG; Löffler KU; Knolle J Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1028-35. PubMed ID: 19815730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]