These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37496638)
1. The value of machine learning for prognosis prediction of diphenhydramine exposure: National analysis of 50,000 patients in the United States. Mehrpour O; Saeedi F; Abdollahi J; Amirabadizadeh A; Goss F J Res Med Sci; 2023; 28():49. PubMed ID: 37496638 [TBL] [Abstract][Full Text] [Related]
2. Outcome prediction of methadone poisoning in the United States: implications of machine learning in the National Poison Data System (NPDS). Mehrpour O; Saeedi F; Vohra V; Hoyte C Drug Chem Toxicol; 2024 Sep; 47(5):556-563. PubMed ID: 37941394 [TBL] [Abstract][Full Text] [Related]
3. Are antimuscarinic effects common in hydroxyzine overdose? A cohort analysis of antimuscarinic effects in hydroxyzine and diphenhydramine-poisoned patients. Simon M; Heard K; Clin Toxicol (Phila); 2023 May; 61(5):379-386. PubMed ID: 37194685 [TBL] [Abstract][Full Text] [Related]
4. Classification of acute poisoning exposures with machine learning models derived from the National Poison Data System. Mehrpour O; Hoyte C; Delva-Clark H; Al Masud A; Biswas A; Schimmel J; Nakhaee S; Goss F Basic Clin Pharmacol Toxicol; 2022 Dec; 131(6):566-574. PubMed ID: 36181236 [TBL] [Abstract][Full Text] [Related]
5. Using a national surgical database to predict complications following posterior lumbar surgery and comparing the area under the curve and F1-score for the assessment of prognostic capability. DeVries Z; Locke E; Hoda M; Moravek D; Phan K; Stratton A; Kingwell S; Wai EK; Phan P Spine J; 2021 Jul; 21(7):1135-1142. PubMed ID: 33601012 [TBL] [Abstract][Full Text] [Related]
6. Computed tomography angiography-based radiomics model for predicting carotid atherosclerotic plaque vulnerability. Shan D; Wang S; Wang J; Lu J; Ren J; Chen J; Wang D; Qi P Front Neurol; 2023; 14():1151326. PubMed ID: 37396779 [TBL] [Abstract][Full Text] [Related]
7. Construction of the machine learning-based live birth prediction models for the first in vitro fertilization pregnant women. Liu X; Chen Z; Ji Y BMC Pregnancy Childbirth; 2023 Jun; 23(1):476. PubMed ID: 37370040 [TBL] [Abstract][Full Text] [Related]
8. Comparison of decision tree with common machine learning models for prediction of biguanide and sulfonylurea poisoning in the United States: an analysis of the National Poison Data System. Mehrpour O; Saeedi F; Nakhaee S; Tavakkoli Khomeini F; Hadianfar A; Amirabadizadeh A; Hoyte C BMC Med Inform Decis Mak; 2023 Apr; 23(1):60. PubMed ID: 37024869 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Conventional Logistic Regression and Machine Learning Methods for Predicting Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Multicentric Observational Cohort Study. Hu P; Li Y; Liu Y; Guo G; Gao X; Su Z; Wang L; Deng G; Yang S; Qi Y; Xu Y; Ye L; Sun Q; Nie X; Sun Y; Li M; Zhang H; Chen Q Front Aging Neurosci; 2022; 14():857521. PubMed ID: 35783143 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Neurological Outcomes in Out-of-hospital Cardiac Arrest Survivors Immediately after Return of Spontaneous Circulation: Ensemble Technique with Four Machine Learning Models. Heo JH; Kim T; Shin J; Suh GJ; Kim J; Jung YS; Park SM; Kim S; J Korean Med Sci; 2021 Jul; 36(28):e187. PubMed ID: 34282605 [TBL] [Abstract][Full Text] [Related]
11. The role of decision tree and machine learning models for outcome prediction of bupropion exposure: A nationwide analysis of more than 14 000 patients in the United States. Mehrpour O; Saeedi F; Vohra V; Abdollahi J; Shirazi FM; Goss F Basic Clin Pharmacol Toxicol; 2023 Jul; 133(1):98-110. PubMed ID: 36960587 [TBL] [Abstract][Full Text] [Related]
12. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage. Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327 [TBL] [Abstract][Full Text] [Related]
13. Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma. Feng M; Zhang J; Zhou X; Mo H; Jia L; Zhang C; Hu Y; Yuan W J Oncol; 2022; 2022():6356399. PubMed ID: 36411795 [TBL] [Abstract][Full Text] [Related]
14. Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis. Lin YT; Chu CY; Hung KS; Lu CH; Bednarczyk EM; Chen HY Comput Methods Programs Biomed; 2022 Oct; 225():107028. PubMed ID: 35930862 [TBL] [Abstract][Full Text] [Related]
15. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
16. Application of machine learning algorithms in predicting HIV infection among men who have sex with men: Model development and validation. He J; Li J; Jiang S; Cheng W; Jiang J; Xu Y; Yang J; Zhou X; Chai C; Wu C Front Public Health; 2022; 10():967681. PubMed ID: 36091522 [TBL] [Abstract][Full Text] [Related]
17. Machine learning-assisted decision-support models to better predict patients with calculous pyonephrosis. Liu H; Wang X; Tang K; Peng E; Xia D; Chen Z Transl Androl Urol; 2021 Feb; 10(2):710-723. PubMed ID: 33718073 [TBL] [Abstract][Full Text] [Related]
18. Establishment and Evaluation of Artificial Intelligence-Based Prediction Models for Chronic Kidney Disease under the Background of Big Data. Yan X; Li X; Lu Y; Ma D; Mou S; Cheng Z; Ding Y; Yan B; Zhang X; Hu G Evid Based Complement Alternat Med; 2022; 2022():6561721. PubMed ID: 35845598 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning-Based Models Enhance the Prediction of Prostate Cancer. Chen S; Jian T; Chi C; Liang Y; Liang X; Yu Y; Jiang F; Lu J Front Oncol; 2022; 12():941349. PubMed ID: 35875103 [TBL] [Abstract][Full Text] [Related]
20. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]