These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37497456)
1. HDR-based CRISPR/Cas9-mediated Knockout of PD-L1 in C57BL/6 Mice. Heeb LV; Taskoparan B; Katsoulas A; Beffinger M; Clavien PA; Kobold S; Gupta A; Berg JV Bio Protoc; 2023 Jul; 13(14):e4724. PubMed ID: 37497456 [TBL] [Abstract][Full Text] [Related]
2. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Fierro J; DiPasquale J; Perez J; Chin B; Chokpapone Y; Tran AM; Holden A; Factoriza C; Sivagnanakumar N; Aguilar R; Mazal S; Lopez M; Dou H Sci Rep; 2022 Feb; 12(1):2417. PubMed ID: 35165339 [TBL] [Abstract][Full Text] [Related]
3. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. Shams F; Bayat H; Mohammadian O; Mahboudi S; Vahidnezhad H; Soosanabadi M; Rahimpour A Bioimpacts; 2022; 12(4):371-391. PubMed ID: 35975201 [No Abstract] [Full Text] [Related]
4. Gene Editing With TALEN and CRISPR/Cas in Rice. Bi H; Yang B Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502 [TBL] [Abstract][Full Text] [Related]
5. A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system. Li X; Sun B; Qian H; Ma J; Paolino M; Zhang Z J Zhejiang Univ Sci B; 2022 Feb; 23(2):141-152. PubMed ID: 35187887 [TBL] [Abstract][Full Text] [Related]
6. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement. Sun Y; Li J; Xia L Front Plant Sci; 2016; 7():1928. PubMed ID: 28066481 [TBL] [Abstract][Full Text] [Related]
7. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Jayavaradhan R; Pillis DM; Goodman M; Zhang F; Zhang Y; Andreassen PR; Malik P Nat Commun; 2019 Jun; 10(1):2866. PubMed ID: 31253785 [TBL] [Abstract][Full Text] [Related]
8. Gene Editing in Clinical Practice: Where are We? Mittal RD Indian J Clin Biochem; 2019 Jan; 34(1):19-25. PubMed ID: 30728669 [TBL] [Abstract][Full Text] [Related]
9. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517 [TBL] [Abstract][Full Text] [Related]
11. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining. Bonawitz ND; Ainley WM; Itaya A; Chennareddy SR; Cicak T; Effinger K; Jiang K; Mall TK; Marri PR; Samuel JP; Sardesai N; Simpson M; Folkerts O; Sarria R; Webb SR; Gonzalez DO; Simmonds DH; Pareddy DR Plant Biotechnol J; 2019 Apr; 17(4):750-761. PubMed ID: 30220095 [TBL] [Abstract][Full Text] [Related]
12. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Miyaoka Y; Berman JR; Cooper SB; Mayerl SJ; Chan AH; Zhang B; Karlin-Neumann GA; Conklin BR Sci Rep; 2016 Mar; 6():23549. PubMed ID: 27030102 [TBL] [Abstract][Full Text] [Related]
13. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Kato-Inui T; Takahashi G; Hsu S; Miyaoka Y Nucleic Acids Res; 2018 May; 46(9):4677-4688. PubMed ID: 29672770 [TBL] [Abstract][Full Text] [Related]
14. Generation of genetically modified rat models via the CRISPR/Cas9 technology. Liu MZ; Wang LR; Li YM; Ma XY; Han HH; Li DL Yi Chuan; 2023 Jan; 45(1):78-87. PubMed ID: 36927640 [TBL] [Abstract][Full Text] [Related]
15. Designed nucleases for targeted genome editing. Lee J; Chung JH; Kim HM; Kim DW; Kim H Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767 [TBL] [Abstract][Full Text] [Related]
16. Use of gene-editing technology to introduce targeted modifications in pigs. Ryu J; Prather RS; Lee K J Anim Sci Biotechnol; 2018; 9():5. PubMed ID: 29423214 [TBL] [Abstract][Full Text] [Related]
17. The Chromatin Structure of CRISPR-Cas9 Target DNA Controls the Balance between Mutagenic and Homology-Directed Gene-Editing Events. Janssen JM; Chen X; Liu J; Gonçalves MAFV Mol Ther Nucleic Acids; 2019 Jun; 16():141-154. PubMed ID: 30884291 [TBL] [Abstract][Full Text] [Related]
18. Savić N; Ringnalda FC; Berk C; Bargsten K; Hall J; Jinek M; Schwank G Bio Protoc; 2019 Jan; 9(1):. PubMed ID: 30675496 [TBL] [Abstract][Full Text] [Related]
19. Conditional targeting of Ispd using paired Cas9 nickase and a single DNA template in mice. Lee AY; Lloyd KC FEBS Open Bio; 2014; 4():637-42. PubMed ID: 25161872 [TBL] [Abstract][Full Text] [Related]
20. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]