BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37497495)

  • 21. Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution.
    Choi WJ; Jeon DI; Ahn SG; Yoon JH; Kim S; Lee BH
    Opt Express; 2010 Oct; 18(22):23285-95. PubMed ID: 21164669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-axial-resolution, full-field optical coherence microscopy using tungsten halogen lamp and liquid-crystal-based achromatic phase shifter.
    Lu SH; Liu WC; Liu JP
    Appl Opt; 2015 May; 54(14):4447-52. PubMed ID: 25967500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Depth-resolved local reflectance spectra measurements in full-field optical coherence tomography.
    Claveau R; Montgomery P; Flury M; Montaner D
    Opt Express; 2017 Aug; 25(17):20216-20232. PubMed ID: 29041705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral fusing Gabor domain optical coherence microscopy.
    Meemon P; Widjaja J; Rolland JP
    Opt Lett; 2016 Feb; 41(3):508-11. PubMed ID: 26907410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band.
    Yamanaka M; Hayakawa N; Nishizawa N
    J Biomed Opt; 2019 Jul; 24(7):1-4. PubMed ID: 31364330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy.
    Aguirre AD; Chen Y; Bryan B; Mashimo H; Huang Q; Connolly JL; Fujimoto JG
    J Biomed Opt; 2010; 15(1):016025. PubMed ID: 20210470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Full-field optical coherence tomography using nematic liquid-crystal phase shifter.
    Lu SH; Wang CY; Hsieh CY; Chiu KY; Chen HY
    Appl Opt; 2012 Mar; 51(9):1361-6. PubMed ID: 22441483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-camera polarization-sensitive full-field optical coherence tomography with polarization switch.
    Park KS; Choi WJ; Eom TJ; Lee BH
    J Biomed Opt; 2013 Oct; 18(10):100504. PubMed ID: 24165738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo video-rate cellular-level full-field optical coherence tomography.
    Akiba M; Chan KP
    J Biomed Opt; 2007; 12(6):064024. PubMed ID: 18163840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correction of coherence gate curvature in high numerical aperture optical coherence imaging.
    Graf BW; Adie SG; Boppart SA
    Opt Lett; 2010 Sep; 35(18):3120-2. PubMed ID: 20847798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography.
    Assayag O; Grieve K; Devaux B; Harms F; Pallud J; Chretien F; Boccara C; Varlet P
    Neuroimage Clin; 2013; 2():549-57. PubMed ID: 24179806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wide-field optical coherence microscopy of the mouse brain slice.
    Min E; Lee J; Vavilin A; Jung S; Shin S; Kim J; Jung W
    Opt Lett; 2015 Oct; 40(19):4420-3. PubMed ID: 26421546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Signal-to-background ratio and lateral resolution in deep tissue imaging by optical coherence microscopy in the 1700 nm spectral band.
    Yamanaka M; Hayakawa N; Nishizawa N
    Sci Rep; 2019 Nov; 9(1):16041. PubMed ID: 31690729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial refractive index measurement of porcine artery using differential phase optical coherence microscopy.
    Kim J; Davé DP; Rylander CG; Oh J; Milner TE
    Lasers Surg Med; 2006 Dec; 38(10):955-9. PubMed ID: 17115385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography.
    Akiba M; Maeda N; Yumikake K; Soma T; Nishida K; Tano Y; Chan KP
    J Biomed Opt; 2007; 12(4):041202. PubMed ID: 17867791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D in vivo imaging with extended-focus optical coherence microscopy.
    Chen Y; Trinh LA; Fingler J; Fraser SE
    J Biophotonics; 2017 Nov; 10(11):1411-1420. PubMed ID: 28417564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motion artifact suppression in full-field optical coherence tomography.
    Sacchet D; Brzezinski M; Moreau J; Georges P; Dubois A
    Appl Opt; 2010 Mar; 49(9):1480-8. PubMed ID: 20300141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrahigh-resolution optical coherence microscopy accurately classifies precancerous and cancerous human cervix free of labeling.
    Zeng X; Zhang X; Li C; Wang X; Jerwick J; Xu T; Ning Y; Wang Y; Zhang L; Zhang Z; Ma Y; Zhou C
    Theranostics; 2018; 8(11):3099-3110. PubMed ID: 29896305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination.
    Makhlouf H; Perronet K; Dupuis G; Lévêque-Fort S; Dubois A
    Opt Lett; 2012 May; 37(10):1613-5. PubMed ID: 22627513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerically focused full-field swept-source optical coherence microscopy with structured illumination.
    Grebenyuk AA; Ginner L; Leitgeb RA
    Opt Express; 2018 Dec; 26(26):33772-33782. PubMed ID: 30650810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.