These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37497992)
21. Metabolic trends of Chinese hamster ovary cells in biopharmaceutical production under batch and fed-batch conditions. Rish AJ; Drennen JK; Anderson CA Biotechnol Prog; 2022 Jan; 38(1):e3220. PubMed ID: 34676699 [TBL] [Abstract][Full Text] [Related]
22. Enhancing protein productivities in CHO cells through adenosine uptake modulation - Novel insights into cellular growth and productivity regulation. Madabhushi SR; Chakravarty T; Kasza T; Padellan M; Atieh TB; Gupta B N Biotechnol; 2024 Nov; 83():163-174. PubMed ID: 39151888 [TBL] [Abstract][Full Text] [Related]
23. A Different Perspective: How Much Innovation Is Really Needed for Monoclonal Antibody Production Using Mammalian Cell Technology? Kelley B; Kiss R; Laird M Adv Biochem Eng Biotechnol; 2018; 165():443-462. PubMed ID: 29721583 [TBL] [Abstract][Full Text] [Related]
24. Progress in fed-batch culture for recombinant protein production in CHO cells. Xu WJ; Lin Y; Mi CL; Pang JY; Wang TY Appl Microbiol Biotechnol; 2023 Feb; 107(4):1063-1075. PubMed ID: 36648523 [TBL] [Abstract][Full Text] [Related]
25. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors. Tan JG; Lee YY; Wang T; Yap MG; Tan TW; Ng SK Biotechnol J; 2015 May; 10(5):790-800. PubMed ID: 25740626 [TBL] [Abstract][Full Text] [Related]
26. Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells. Ho SC; Nian R; Woen S; Chng J; Zhang P; Yang Y J Biosci Bioeng; 2016 Oct; 122(4):499-506. PubMed ID: 27067279 [TBL] [Abstract][Full Text] [Related]
27. Modeling the Effect of Amino Acids and Copper on Monoclonal Antibody Productivity and Glycosylation: A Modular Approach. Luo Y; Lovelett RJ; Price JV; Radhakrishnan D; Barnthouse K; Hu P; Schaefer E; Cunningham J; Lee KH; Shivappa RB; Ogunnaike BA Biotechnol J; 2021 Feb; 16(2):e2000261. PubMed ID: 32875683 [TBL] [Abstract][Full Text] [Related]
28. Fed-Batch CHO Cell Culture for Lab-Scale Antibody Production. Fan Y; Ley D; Andersen MR Methods Mol Biol; 2018; 1674():147-161. PubMed ID: 28921435 [TBL] [Abstract][Full Text] [Related]
29. Investigating the influence of physiologically relevant hydrostatic pressure on CHO cell batch culture. Shang M; Kwon T; Hamel JP; Lim CT; Khoo BL; Han J Sci Rep; 2021 Jan; 11(1):162. PubMed ID: 33420324 [TBL] [Abstract][Full Text] [Related]
30. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Yang WC; Lu J; Kwiatkowski C; Yuan H; Kshirsagar R; Ryll T; Huang YM Biotechnol Prog; 2014; 30(3):616-25. PubMed ID: 24574326 [TBL] [Abstract][Full Text] [Related]
31. Tuning metabolic efficiency for increased product yield in high titer fed-batch Chinese hamster ovary cell culture. Helfer A; Gros S; Kolwyck D; Karst DJ Biotechnol Prog; 2023; 39(3):e3327. PubMed ID: 36700684 [TBL] [Abstract][Full Text] [Related]
32. High-throughput screening of antibody-expressing CHO clones using an automated shaken deep-well system. Wang B; Albanetti T; Miro-Quesada G; Flack L; Li L; Klover J; Burson K; Evans K; Ivory W; Bowen M; Schoner R; Hawley-Nelson P Biotechnol Prog; 2018 Nov; 34(6):1460-1471. PubMed ID: 30298994 [TBL] [Abstract][Full Text] [Related]
33. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables. Clavaud M; Roggo Y; Von Daeniken R; Liebler A; Schwabe JO Talanta; 2013 Jul; 111():28-38. PubMed ID: 23622522 [TBL] [Abstract][Full Text] [Related]
34. Effects of cysteine, asparagine, or glutamine limitations in Chinese hamster ovary cell batch and fed-batch cultures. Ghaffari N; Jardon MA; Krahn N; Butler M; Kennard M; Turner RFB; Gopaluni B; Piret JM Biotechnol Prog; 2020 Mar; 36(2):e2946. PubMed ID: 31823468 [TBL] [Abstract][Full Text] [Related]
35. Model-based optimization of antibody galactosylation in CHO cell culture. Kotidis P; Jedrzejewski P; Sou SN; Sellick C; Polizzi K; Del Val IJ; Kontoravdi C Biotechnol Bioeng; 2019 Jul; 116(7):1612-1626. PubMed ID: 30802295 [TBL] [Abstract][Full Text] [Related]
36. Dissecting cell death pathways in fed-batch bioreactors. Mentlak DA; Raven J; Moses T; Massie F; Barber N; Hoare R; Burton G; Young A; Pybus LP; Rosser S; White RJ; Ungar D; Bryant NJ Biotechnol J; 2024 Jan; 19(1):e2300257. PubMed ID: 38038229 [TBL] [Abstract][Full Text] [Related]
37. Process intensification for the production of rituximab by an inducible CHO cell line. Mellahi K; Brochu D; Gilbert M; Perrier M; Ansorge S; Durocher Y; Henry O Bioprocess Biosyst Eng; 2019 May; 42(5):711-725. PubMed ID: 30673843 [TBL] [Abstract][Full Text] [Related]
38. Autophagy-inducing peptide increases CHO cell monoclonal antibody production in batch and fed-batch cultures. Braasch K; Kryworuchko M; Piret JM Biotechnol Bioeng; 2021 May; 118(5):1876-1883. PubMed ID: 33543765 [TBL] [Abstract][Full Text] [Related]
39. Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect. Buchsteiner M; Quek LE; Gray P; Nielsen LK Biotechnol Bioeng; 2018 Sep; 115(9):2315-2327. PubMed ID: 29704441 [TBL] [Abstract][Full Text] [Related]
40. Baicalein Reduces Oxidative Stress in CHO Cell Cultures and Improves Recombinant Antibody Productivity. Ha TK; Hansen AH; Kol S; Kildegaard HF; Lee GM Biotechnol J; 2018 Mar; 13(3):e1700425. PubMed ID: 29125225 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]