These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37498185)

  • 1. Implantable Multi-Cross-Linked Membrane-Ionogel Assembly for Reversible Non-Faradaic Neurostimulation.
    Kim JS; Kim J; Lim JW; Kim DJ; Lee JI; Choi H; Kweon H; Lee J; Yee H; Kim JH; Kim B; Kang MS; Jeong JH; Park SM; Kim DH
    ACS Nano; 2023 Aug; 17(15):14706-14717. PubMed ID: 37498185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Neural Interfaces with Photopatternable, Bioadhesive, and Highly Conductive Hydrogels for Stable Chronic Neuromodulation.
    Yang M; Chen P; Qu X; Zhang F; Ning S; Ma L; Yang K; Su Y; Zang J; Jiang W; Yu T; Dong X; Luo Z
    ACS Nano; 2023 Jan; ():. PubMed ID: 36629747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Electrodes with Robust Conducting Hydrogel Coating for Neural Recording and Modulation.
    Zhang J; Wang L; Xue Y; Lei IM; Chen X; Zhang P; Cai C; Liang X; Lu Y; Liu J
    Adv Mater; 2023 Jan; 35(3):e2209324. PubMed ID: 36398434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pure Conducting Polymer Hydrogels Increase Signal-to-Noise of Cutaneous Electrodes by Lowering Skin Interface Impedance.
    Roubert Martinez S; Le Floch P; Liu J; Howe RD
    Adv Healthc Mater; 2023 Jul; 12(17):e2202661. PubMed ID: 36867669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical bioadhesive interface for bioelectronics.
    Deng J; Yuk H; Wu J; Varela CE; Chen X; Roche ET; Guo CF; Zhao X
    Nat Mater; 2021 Feb; 20(2):229-236. PubMed ID: 32989277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroconductive, Adhesive, Non-Swelling, and Viscoelastic Hydrogels for Bioelectronics.
    Han IK; Song KI; Jung SM; Jo Y; Kwon J; Chung T; Yoo S; Jang J; Kim YT; Hwang DS; Kim YS
    Adv Mater; 2023 Jan; 35(4):e2203431. PubMed ID: 35816086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of oxygen reduction reactions at neurostimulation electrodes.
    Ehlich J; Migliaccio L; Sahalianov I; Nikić M; Brodský J; Gablech I; Vu XT; Ingebrandt S; Głowacki ED
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35688124
    [No Abstract]   [Full Text] [Related]  

  • 9. Soft and Ion-Conducting Materials in Bioelectronics: From Conducting Polymers to Hydrogels.
    Jia M; Rolandi M
    Adv Healthc Mater; 2020 Mar; 9(5):e1901372. PubMed ID: 31976634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-healing electrical bioadhesive interface for electrophysiology recording.
    Ma H; Hou J; Xiao X; Wan R; Ge G; Zheng W; Chen C; Cao J; Wang J; Liu C; Zhao Q; Zhang Z; Jiang P; Chen S; Xiong W; Xu J; Lu B
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):639-648. PubMed ID: 37864869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress of electroactive interface in neural engineering.
    Shan Y; Cui X; Chen X; Li Z
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Jan; 15(1):e01827. PubMed ID: 35715994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hydrogel-Based Microfluidic Nerve Cuff for Neuromodulation of Peripheral Nerves.
    Thakur R; Aplin FP; Fridman GY
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for interface issues and challenges of neural electrodes.
    Liang C; Liu Y; Lu W; Tian G; Zhao Q; Yang D; Sun J; Qi D
    Nanoscale; 2022 Mar; 14(9):3346-3366. PubMed ID: 35179152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces.
    Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK
    Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review on Implantable Neuroelectrodes.
    Krishnan J; Joseph R; Vayalappil MC; Krishnan S; Kishore A
    Crit Rev Biomed Eng; 2024; 52(1):21-39. PubMed ID: 37938182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic, Conductive, and Mechanically Strong Hydrogels from Dual-Cross-Linked Aramid Nanofiber Composites.
    He H; Li Y; Liu H; Kim Y; Yan A; Xu L
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7539-7545. PubMed ID: 33535743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant.
    Green RA; Lovell NH; Wallace GG; Poole-Warren LA
    Biomaterials; 2008; 29(24-25):3393-9. PubMed ID: 18501423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of bioactive conducting polymers for neural interfaces.
    Poole-Warren L; Lovell N; Baek S; Green R
    Expert Rev Med Devices; 2010 Jan; 7(1):35-49. PubMed ID: 20021239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.