BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 374982)

  • 1. Assay of pyridoxal phosphate and pyridoxamine phosphate, employing S-o-nitrophenyl-L-cysteine, a chromogenic substrate of tryptophanase.
    Suelter CH; Snell EE
    Methods Enzymol; 1979; 62():561-8. PubMed ID: 374982
    [No Abstract]   [Full Text] [Related]  

  • 2. Application of a direct spectrophotometric assay employing a chromogenic substrate for tryptophanase to the determination of pyridoxal and pyridoxamine 5'-phosphates.
    Suelter CH; Wang J; Snell EE
    Anal Biochem; 1976 Nov; 76(l):221-32. PubMed ID: 11704
    [No Abstract]   [Full Text] [Related]  

  • 3. Tryptophanase from Escherichia coli: catalytic and spectral properties in water-organic solvents.
    Faleev NG; Dementieva IS; Zakomirdina LN; Gogoleva OI; Belikov VM
    Biochem Mol Biol Int; 1994 Aug; 34(1):209-16. PubMed ID: 7849621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyridoxal-5'-phosphate-sensitized photoinactivation of tryptophanase and evidence for essential histidyl residues in the active sites.
    Nihira T; Toraya T; Fukui S
    Eur J Biochem; 1979 Nov; 101(2):341-7. PubMed ID: 391555
    [No Abstract]   [Full Text] [Related]  

  • 5. A simple preparation method for apoaspartate aminotransferase from Escherichia coli B, and its application for the assay of pyridoxal and pyridoxamine 5'-phosphate.
    Yagi T; Kirino J; Yamamoto S; Nozaki M
    J Biochem; 1985 Oct; 98(4):921-6. PubMed ID: 3908450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of pyridoxal 5'-phosphate and pyridoxal 5'-phosphate-dependent enzymes on Sepharose.
    Ikeda S; Fukui S
    Methods Enzymol; 1979; 62():517-27. PubMed ID: 108513
    [No Abstract]   [Full Text] [Related]  

  • 7. Kinetic and equilibrium studies on the activation of Escherichia coli K12 tryptophanase by pyridoxal 5'-phosphate and monovalent cations.
    Högberg-Raibaud A; Raibaud O; Goldberg ME
    J Biol Chem; 1975 May; 250(9):3352-8. PubMed ID: 1091651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic deductions from multiple kinetic and solvent deuterium isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Escherichia coli tryptophan indole-lyase.
    Kiick DM; Phillips RS
    Biochemistry; 1988 Sep; 27(19):7339-44. PubMed ID: 3061452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction and regulation mechanisms of selenocysteine beta-lyase.
    Esaki N; Karai N; Tanaka H; Soda K
    Prog Clin Biol Res; 1984; 144A():329-38. PubMed ID: 6233619
    [No Abstract]   [Full Text] [Related]  

  • 10. Phosphorus 31 nuclear magnetic resonance study of tryptophanase. Pyridoxal phosphate-binding site.
    Schnackerz KD; Snell EE
    J Biol Chem; 1983 Apr; 258(8):4839-41. PubMed ID: 6339506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction mechanism of Escherichia coli cystathionine gamma-synthase: direct evidence for a pyridoxamine derivative of vinylglyoxylate as a key intermediate in pyridoxal phosphate dependent gamma-elimination and gamma-replacement reactions.
    Brzović P; Holbrook EL; Greene RC; Dunn MF
    Biochemistry; 1990 Jan; 29(2):442-51. PubMed ID: 2405904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of an intermediate and its rate of conversion to pyruvate during the tryptophanase-catalyzed degradation of S-o-nitrophenyl-L-cysteine.
    Hillebrand GG; Dye JL; Suelter CH
    Biochemistry; 1979 May; 18(9):1751-5. PubMed ID: 435483
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparative studies on the properties of tryptophanase and tyrosine phenol-lyase immobilized directly on Sepharose or by use of Sepharose-bound pyridoxal 5'-phosphate.
    Fukui S; Ikeda S; Fujimura M; Yamada H; Kumagai H
    Eur J Biochem; 1975 Feb; 51(1):155-64. PubMed ID: 1091485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic function of a tyrosyl residue in tryptophanase.
    Kakizono T; Nihira T; Taguchi H
    Biochem Biophys Res Commun; 1986 Jun; 137(3):964-9. PubMed ID: 3524569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that cysteine 298 is in the active site of tryptophan indole-lyase.
    Phillips RS; Gollnick PD
    J Biol Chem; 1989 Jun; 264(18):10627-32. PubMed ID: 2659590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential arginine residues in tryptophanase from Escherichia coli.
    Kazarinoff MN; Snell EE
    J Biol Chem; 1977 Nov; 252(21):7598-602. PubMed ID: 334762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional interdependence of the protomers of Escherichia coli K 12 tryptophanase during binding of pyridoxal 5'-phosphate.
    Raibaud O; Goldberg ME
    J Biol Chem; 1976 May; 251(9):2814-9. PubMed ID: 770472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivation of enzymes by light-stimulated cleavage of reduced pyridoxal 5'-phosphate-enzyme complexes.
    Ritchey JM; Gibbons I; Schachman HK
    Biochemistry; 1977 Oct; 16(21):4584-90. PubMed ID: 20936
    [No Abstract]   [Full Text] [Related]  

  • 19. The regulation of alanine and aspartate aminotransferase by different aminothiols and by vitamin B-6 derivatives.
    Pagani R; Leoncini R; Terzuoli L; Pizzichini M; Marinello E
    Biochim Biophys Acta; 1994 Feb; 1204(2):250-6. PubMed ID: 8142466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereochemistry of the transamination reaction catalyzed by aminodeoxychorismate lyase from Escherichia coli: close relationship between fold type and stereochemistry.
    Jhee KH; Yoshimura T; Miles EW; Takeda S; Miyahara I; Hirotsu K; Soda K; Kawata Y; Esaki N
    J Biochem; 2000 Oct; 128(4):679-86. PubMed ID: 11011151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.