These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37498342)

  • 81. Solid-state electrical applications of protein and peptide based nanomaterials.
    Panda SS; Katz HE; Tovar JD
    Chem Soc Rev; 2018 May; 47(10):3640-3658. PubMed ID: 29683469
    [TBL] [Abstract][Full Text] [Related]  

  • 82. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics.
    Song HS; Kwon OS; Kim JH; Conde J; Artzi N
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):187-200. PubMed ID: 27020065
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators.
    Jin L; Xiao X; Deng W; Nashalian A; He D; Raveendran V; Yan C; Su H; Chu X; Yang T; Li W; Yang W; Chen J
    Nano Lett; 2020 Sep; 20(9):6404-6411. PubMed ID: 32584050
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Transparent Electronics for Wearable Electronics Application.
    Won D; Bang J; Choi SH; Pyun KR; Jeong S; Lee Y; Ko SH
    Chem Rev; 2023 Aug; 123(16):9982-10078. PubMed ID: 37542724
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications.
    Llerena Zambrano B; Renz AF; Ruff T; Lienemann S; Tybrandt K; Vörös J; Lee J
    Adv Healthc Mater; 2021 Feb; 10(3):e2001397. PubMed ID: 33205564
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The Importance of Materials Design to Make Ions Flow: Toward Novel Materials Platforms for Bioelectronics Applications.
    Pacheco-Moreno CM; Schreck M; Scaccabarozzi AD; Bourgun P; Wantz G; Stevens MM; Dautel OJ; Stingelin N
    Adv Mater; 2017 Jan; 29(4):. PubMed ID: 27869344
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Skin bioelectronics towards long-term, continuous health monitoring.
    Wang Y; Haick H; Guo S; Wang C; Lee S; Yokota T; Someya T
    Chem Soc Rev; 2022 May; 51(9):3759-3793. PubMed ID: 35420617
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Advances in single-molecule junctions as tools for chemical and biochemical analysis.
    Dief EM; Low PJ; Díez-Pérez I; Darwish N
    Nat Chem; 2023 May; 15(5):600-614. PubMed ID: 37106094
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human-Machine Interfaces.
    Zarei M; Lee G; Lee SG; Cho K
    Adv Mater; 2023 Jan; 35(4):e2203193. PubMed ID: 35737931
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Advance of Mechanically Controllable Break Junction for Molecular Electronics.
    Wang L; Wang L; Zhang L; Xiang D
    Top Curr Chem (Cham); 2017 Jun; 375(3):61. PubMed ID: 28540580
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Recent advances in the field of bionanotechnology: an insight into optoelectric bacteriorhodopsin, quantum dots, and noble metal nanoclusters.
    Knoblauch C; Griep M; Friedrich C
    Sensors (Basel); 2014 Oct; 14(10):19731-66. PubMed ID: 25340449
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Dipole-Modulated Charge Transport through PNP-Type Single-Molecule Junctions.
    Li M; Fu H; Wang B; Cheng J; Hu W; Yin B; Peng P; Zhou S; Gao X; Jia C; Guo X
    J Am Chem Soc; 2022 Nov; 144(45):20797-20803. PubMed ID: 36274261
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Controlling electronic States and transport properties at the level of single molecules.
    Pan S; Zhao A; Wang B; Yang J; Hou J
    Adv Mater; 2010 May; 22(17):1967-71. PubMed ID: 20301130
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Advances in Microsensors and Wearable Bioelectronics for Digital Stethoscopes in Health Monitoring and Disease Diagnosis.
    Lee SH; Kim YS; Yeo WH
    Adv Healthc Mater; 2021 Nov; 10(22):e2101400. PubMed ID: 34486237
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Advances in Materials for Recent Low-Profile Implantable Bioelectronics.
    Chen Y; Kim YS; Tillman BW; Yeo WH; Chun Y
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29596359
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Single-Molecule Electronics: Chemical and Analytical Perspectives.
    Nichols RJ; Higgins SJ
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():389-417. PubMed ID: 26048551
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Hydrogel facilitated bioelectronic integration.
    Vo R; Hsu HH; Jiang X
    Biomater Sci; 2021 Jan; 9(1):23-37. PubMed ID: 33094761
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Single molecule electronics and devices.
    Tsutsui M; Taniguchi M
    Sensors (Basel); 2012; 12(6):7259-98. PubMed ID: 22969345
    [TBL] [Abstract][Full Text] [Related]  

  • 99. An overview of the first half-century of molecular electronics.
    Hush NS
    Ann N Y Acad Sci; 2003 Dec; 1006():1-20. PubMed ID: 14976006
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials.
    Choi S; Lee H; Ghaffari R; Hyeon T; Kim DH
    Adv Mater; 2016 Jun; 28(22):4203-18. PubMed ID: 26779680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.