These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37498483)

  • 1. Effectiveness of deep learning reconstruction on standard to ultra-low-dose high-definition chest CT images.
    Hamabuchi N; Ohno Y; Kimata H; Ito Y; Fujii K; Akino N; Takenaka D; Yoshikawa T; Oshima Y; Matsuyama T; Nagata H; Ueda T; Ikeda H; Ozawa Y; Toyama H
    Jpn J Radiol; 2023 Dec; 41(12):1373-1388. PubMed ID: 37498483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Value of deep learning reconstruction of chest low-dose CT for image quality improvement and lung parenchyma assessment on lung window.
    Wang J; Sui X; Zhao R; Du H; Wang J; Wang Y; Qin R; Lu X; Ma Z; Xu Y; Jin Z; Song L; Song W
    Eur Radiol; 2024 Feb; 34(2):1053-1064. PubMed ID: 37581663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Oda S; Tanoue S; Kidoh M; Nakaura T; Funama Y; Uchimura R; Takada S; Hayashi H; Hatemura M; Hirai T
    AJR Am J Roentgenol; 2022 Aug; 219(2):315-324. PubMed ID: 35195431
    [No Abstract]   [Full Text] [Related]  

  • 4. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT.
    Singh R; Digumarthy SR; Muse VV; Kambadakone AR; Blake MA; Tabari A; Hoi Y; Akino N; Angel E; Madan R; Kalra MK
    AJR Am J Roentgenol; 2020 Mar; 214(3):566-573. PubMed ID: 31967501
    [No Abstract]   [Full Text] [Related]  

  • 5. Value of deep learning reconstruction at ultra-low-dose CT for evaluation of urolithiasis.
    Zhang G; Zhang X; Xu L; Bai X; Jin R; Xu M; Yan J; Jin Z; Sun H
    Eur Radiol; 2022 Sep; 32(9):5954-5963. PubMed ID: 35357541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lung-Optimized Deep-Learning-Based Reconstruction for Ultralow-Dose CT.
    Goto M; Nagayama Y; Sakabe D; Emoto T; Kidoh M; Oda S; Nakaura T; Taguchi N; Funama Y; Takada S; Uchimura R; Hayashi H; Hatemura M; Kawanaka K; Hirai T
    Acad Radiol; 2023 Mar; 30(3):431-440. PubMed ID: 35738988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of Deep Learning-Based Denoising and Iterative Reconstruction for Ultra-Low-Dose CT of the Chest: Image Quality and Lung-RADS Evaluation.
    Hata A; Yanagawa M; Yoshida Y; Miyata T; Tsubamoto M; Honda O; Tomiyama N
    AJR Am J Roentgenol; 2020 Dec; 215(6):1321-1328. PubMed ID: 33052702
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis.
    van Stiphout JA; Driessen J; Koetzier LR; Ruules LB; Willemink MJ; Heemskerk JWT; van der Molen AJ
    Eur Radiol; 2022 May; 32(5):2921-2929. PubMed ID: 34913104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study.
    Greffier J; Si-Mohamed S; Frandon J; Loisy M; de Oliveira F; Beregi JP; Dabli D
    Med Phys; 2022 Aug; 49(8):5052-5063. PubMed ID: 35696272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic value of deep learning reconstruction for radiation dose reduction at abdominal ultra-high-resolution CT.
    Nakamura Y; Narita K; Higaki T; Akagi M; Honda Y; Awai K
    Eur Radiol; 2021 Jul; 31(7):4700-4709. PubMed ID: 33389036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of lung CT number and airway dimension evaluation capabilities of ultra-high-resolution CT, using different scan modes and reconstruction methods including deep learning reconstruction, with those of multi-detector CT in a QIBA phantom study.
    Ohno Y; Akino N; Fujisawa Y; Kimata H; Ito Y; Fujii K; Kataoka Y; Ida Y; Oshima Y; Hamabuchi N; Shigemura C; Watanabe A; Obama Y; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H
    Eur Radiol; 2023 Jan; 33(1):368-379. PubMed ID: 35841417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study.
    Greffier J; Durand Q; Frandon J; Si-Mohamed S; Loisy M; de Oliveira F; Beregi JP; Dabli D
    Eur Radiol; 2023 Jan; 33(1):699-710. PubMed ID: 35864348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can deep learning improve image quality of low-dose CT: a prospective study in interstitial lung disease.
    Zhao R; Sui X; Qin R; Du H; Song L; Tian D; Wang J; Lu X; Wang Y; Song W; Jin Z
    Eur Radiol; 2022 Dec; 32(12):8140-8151. PubMed ID: 35748899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing Radiation Dose at Chest CT: Comparison Among Model-based Type Iterative Reconstruction, Hybrid Iterative Reconstruction, and Filtered Back Projection.
    de Margerie-Mellon C; de Bazelaire C; Montlahuc C; Lambert J; Martineau A; Coulon P; de Kerviler E; Beigelman C
    Acad Radiol; 2016 Oct; 23(10):1246-54. PubMed ID: 27346234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based reconstruction can improve the image quality of low radiation dose head CT.
    Nagayama Y; Iwashita K; Maruyama N; Uetani H; Goto M; Sakabe D; Emoto T; Nakato K; Shigematsu S; Kato Y; Takada S; Kidoh M; Oda S; Nakaura T; Hatemura M; Ueda M; Mukasa A; Hirai T
    Eur Radiol; 2023 May; 33(5):3253-3265. PubMed ID: 36973431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dose whole-body CT using deep learning image reconstruction: image quality and lesion detection.
    Noda Y; Kaga T; Kawai N; Miyoshi T; Kawada H; Hyodo F; Kambadakone A; Matsuo M
    Br J Radiol; 2021 May; 94(1121):20201329. PubMed ID: 33571010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction.
    Otgonbaatar C; Ryu JK; Shin J; Woo JY; Seo JW; Shim H; Hwang DH
    Korean J Radiol; 2022 Nov; 23(11):1044-1054. PubMed ID: 36196766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment.
    Bornet PA; Villani N; Gillet R; Germain E; Lombard C; Blum A; Gondim Teixeira PA
    Eur Radiol; 2022 May; 32(5):3161-3172. PubMed ID: 34989850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial resolution, noise properties, and detectability index of a deep learning reconstruction algorithm for dual-energy CT of the abdomen.
    Thor D; Titternes R; Poludniowski G
    Med Phys; 2023 May; 50(5):2775-2786. PubMed ID: 36774193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms.
    Oostveen LJ; Meijer FJA; de Lange F; Smit EJ; Pegge SA; Steens SCA; van Amerongen MJ; Prokop M; Sechopoulos I
    Eur Radiol; 2021 Aug; 31(8):5498-5506. PubMed ID: 33693996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.