These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 37498510)
21. Ultrafast photoreaction dynamics of a light-driven sodium-ion-pumping retinal protein from Krokinobacter eikastus revealed by femtosecond time-resolved absorption spectroscopy. Tahara S; Takeuchi S; Abe-Yoshizumi R; Inoue K; Ohtani H; Kandori H; Tahara T J Phys Chem Lett; 2015 Nov; 6(22):4481-6. PubMed ID: 26582475 [TBL] [Abstract][Full Text] [Related]
22. Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment. Palings I; Pardoen JA; van den Berg E; Winkel C; Lugtenburg J; Mathies RA Biochemistry; 1987 May; 26(9):2544-56. PubMed ID: 3607032 [TBL] [Abstract][Full Text] [Related]
23. Energetics and dynamics of a light-driven sodium-pumping rhodopsin. Suomivuori CM; Gamiz-Hernandez AP; Sundholm D; Kaila VRI Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7043-7048. PubMed ID: 28611220 [TBL] [Abstract][Full Text] [Related]
24. Probing the photointermediates of light-driven sodium ion pump KR2 by DNP-enhanced solid-state NMR. Jakdetchai O; Eberhardt P; Asido M; Kaur J; Kriebel CN; Mao J; Leeder AJ; Brown LJ; Brown RCD; Becker-Baldus J; Bamann C; Wachtveitl J; Glaubitz C Sci Adv; 2021 Mar; 7(11):. PubMed ID: 33712469 [TBL] [Abstract][Full Text] [Related]
25. Role of Asn112 in a Light-Driven Sodium Ion-Pumping Rhodopsin. Abe-Yoshizumi R; Inoue K; Kato HE; Nureki O; Kandori H Biochemistry; 2016 Oct; 55(41):5790-5797. PubMed ID: 27673340 [TBL] [Abstract][Full Text] [Related]
26. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin. Furutani Y; Shichida Y; Kandori H Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303 [TBL] [Abstract][Full Text] [Related]
27. Structure of the retinal chromophore in sensory rhodopsin I from resonance Raman spectroscopy. Fodor SP; Gebhard R; Lugtenburg J; Bogomolni RA; Mathies RA J Biol Chem; 1989 Nov; 264(31):18280-3. PubMed ID: 2808377 [TBL] [Abstract][Full Text] [Related]
28. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
29. Absorption of schiff-base retinal chromophores in vacuo. Andersen LH; Nielsen IB; Kristensen MB; El Ghazaly MO; Haacke S; Nielsen MB; Petersen MA J Am Chem Soc; 2005 Sep; 127(35):12347-50. PubMed ID: 16131214 [TBL] [Abstract][Full Text] [Related]
30. Excitonic coupling effect on the circular dichroism spectrum of sodium-pumping rhodopsin KR2. Fujimoto KJ; Inoue K J Chem Phys; 2020 Jul; 153(4):045101. PubMed ID: 32752712 [TBL] [Abstract][Full Text] [Related]
32. Transient Near-UV Absorption of the Light-Driven Sodium Pump Asido M; Kar RK; Kriebel CN; Braun M; Glaubitz C; Schapiro I; Wachtveitl J J Phys Chem Lett; 2021 Jul; 12(27):6284-6291. PubMed ID: 34213348 [TBL] [Abstract][Full Text] [Related]
33. Hydrogen-Bonding and Hydrophobic Interaction Networks as Structural Determinants of Microbial Rhodopsin Function. Bertalan É; Konno M; Del Carmen Marín M; Bagherzadeh R; Nagata T; Brown L; Inoue K; Bondar AN J Phys Chem B; 2024 Aug; 128(30):7407-7426. PubMed ID: 39024507 [TBL] [Abstract][Full Text] [Related]
34. How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore. van Keulen SC; Solano A; Rothlisberger U J Chem Theory Comput; 2017 Sep; 13(9):4524-4534. PubMed ID: 28731695 [TBL] [Abstract][Full Text] [Related]
35. Inverse Hydrogen-Bonding Change Between the Protonated Retinal Schiff Base and Water Molecules upon Photoisomerization in Heliorhodopsin 48C12. Tomida S; Kitagawa S; Kandori H; Furutani Y J Phys Chem B; 2021 Aug; 125(30):8331-8341. PubMed ID: 34292728 [TBL] [Abstract][Full Text] [Related]
36. Excited-state dynamics of all-trans protonated retinal Schiff base in CRABPII-based rhodopsin mimics. Li G; Hu Y; Pei S; Meng J; Wang J; Wang J; Yue S; Wang Z; Wang S; Liu X; Weng Y; Peng X; Zhao Q Biophys J; 2022 Nov; 121(21):4109-4118. PubMed ID: 36181266 [TBL] [Abstract][Full Text] [Related]
37. Atomic and molecular analysis highlights the biophysics of unprotonated and protonated retinal in UV and scotopic vision. Kubli-Garfias C; Vázquez-Ramírez R; Cabrera-Vivas BM; Gómez-Reyes B; Ramírez JC Photochem Photobiol Sci; 2015 Sep; 14(9):1660-72. PubMed ID: 26138670 [TBL] [Abstract][Full Text] [Related]
38. Structure of the retinal chromophore in 7,9-dicis-rhodopsin. Loppnow GR; Miley ME; Mathies RA; Liu RS; Kandori H; Shichida Y; Fukada Y; Yoshizawa T Biochemistry; 1990 Sep; 29(38):8985-91. PubMed ID: 2271572 [TBL] [Abstract][Full Text] [Related]
39. Changes in structure of the chromophore in the photochemical process of bovine rhodopsin as revealed by FTIR spectroscopy for hydrogen out-of-plane vibrations. Ohkita YJ; Sasaki J; Maeda A; Yoshizawa T; Groesbeek M; Verdegem P; Lugtenburg J Biophys Chem; 1995; 56(1-2):71-8. PubMed ID: 7662871 [TBL] [Abstract][Full Text] [Related]
40. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange. Deng H; Huang L; Callender R; Ebrey T Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]