These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37498558)

  • 21. Single-cell RNA-sequencing data clustering using variational graph attention auto-encoder with self-supervised leaning.
    Li B; Peng C; You Z; Zhang X; Zhang S
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37898127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A parameter-free deep embedded clustering method for single-cell RNA-seq data.
    Zeng Y; Wei Z; Zhong F; Pan Z; Lu Y; Yang Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EDClust: an EM-MM hybrid method for cell clustering in multiple-subject single-cell RNA sequencing.
    Wei X; Li Z; Ji H; Wu H
    Bioinformatics; 2022 May; 38(10):2692-2699. PubMed ID: 35561178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectral clustering based on learning similarity matrix.
    Park S; Zhao H
    Bioinformatics; 2018 Jun; 34(12):2069-2076. PubMed ID: 29432517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SCMcluster: a high-precision cell clustering algorithm integrating marker gene set with single-cell RNA sequencing data.
    Wu H; Zhou H; Zhou B; Wang M
    Brief Funct Genomics; 2023 Jul; 22(4):329-340. PubMed ID: 36848584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FlowGrid enables fast clustering of very large single-cell RNA-seq data.
    Fang X; Ho JWK
    Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation.
    Chen L; Zhai Y; He Q; Wang W; Deng M
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. scConsensus: combining supervised and unsupervised clustering for cell type identification in single-cell RNA sequencing data.
    Ranjan B; Schmidt F; Sun W; Park J; Honardoost MA; Tan J; Arul Rayan N; Prabhakar S
    BMC Bioinformatics; 2021 Apr; 22(1):186. PubMed ID: 33845760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data.
    Wang S; Zhang Y; Zhang Y; Wu W; Ye L; Li Y; Su J; Pang S
    Comput Biol Med; 2023 Sep; 163():107152. PubMed ID: 37364529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data.
    Yang Y; Huh R; Culpepper HW; Lin Y; Love MI; Li Y
    Bioinformatics; 2019 Apr; 35(8):1269-1277. PubMed ID: 30202935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.