BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 37498561)

  • 1. Single-cell Hi-C data enhancement with deep residual and generative adversarial networks.
    Wang Y; Guo Z; Cheng J
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HiCARN: resolution enhancement of Hi-C data using cascading residual networks.
    Hicks P; Oluwadare O
    Bioinformatics; 2022 Apr; 38(9):2414-2421. PubMed ID: 35274679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework.
    Hu Y; Ma W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i272-i279. PubMed ID: 34252966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep generative modeling and clustering of single cell Hi-C data.
    Liu Q; Zeng W; Zhang W; Wang S; Chen H; Jiang R; Zhou M; Zhang S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. hicGAN infers super resolution Hi-C data with generative adversarial networks.
    Liu Q; Lv H; Jiang R
    Bioinformatics; 2019 Jul; 35(14):i99-i107. PubMed ID: 31510693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data.
    Liu T; Wang Z
    Bioinformatics; 2019 Nov; 35(21):4222-4228. PubMed ID: 31056636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepHiC: A generative adversarial network for enhancing Hi-C data resolution.
    Hong H; Jiang S; Li H; Du G; Sun Y; Tao H; Quan C; Zhao C; Li R; Li W; Yin X; Huang Y; Li C; Chen H; Bo X
    PLoS Comput Biol; 2020 Feb; 16(2):e1007287. PubMed ID: 32084131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFHiC: a dilated full convolution model to enhance the resolution of Hi-C data.
    Wang B; Liu K; Li Y; Wang J
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HiC-GNN: A generalizable model for 3D chromosome reconstruction using graph convolutional neural networks.
    Hovenga V; Kalita J; Oluwadare O
    Comput Struct Biotechnol J; 2023; 21():812-836. PubMed ID: 36698967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SCL: a lattice-based approach to infer 3D chromosome structures from single-cell Hi-C data.
    Zhu H; Wang Z
    Bioinformatics; 2019 Oct; 35(20):3981-3988. PubMed ID: 30865261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic evaluation of Hi-C data enhancement methods for enhancing PLAC-seq and HiChIP data.
    Huang L; Yang Y; Li G; Jiang M; Wen J; Abnousi A; Rosen JD; Hu M; Li Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35488276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying TAD-like domains on single-cell Hi-C data by graph embedding and changepoint detection.
    Liu E; Lyu H; Liu Y; Fu L; Cheng X; Yin X
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38449288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data.
    Highsmith M; Cheng J
    Sci Rep; 2021 Apr; 11(1):8880. PubMed ID: 33893353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation.
    Zhou J; Ma J; Chen Y; Cheng C; Bao B; Peng J; Sejnowski TJ; Dixon JR; Ecker JR
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):14011-14018. PubMed ID: 31235599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ReHiC: Enhancing Hi-C data resolution via residual convolutional network.
    Cheng Z; Liu L; Lin G; Yi C; Chu X; Liang Y; Zhou W; Jin X
    J Bioinform Comput Biol; 2021 Apr; 19(2):2150001. PubMed ID: 33685371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ParticleChromo3D: a Particle Swarm Optimization algorithm for chromosome 3D structure prediction from Hi-C data.
    Vadnais D; Middleton M; Oluwadare O
    BioData Min; 2022 Sep; 15(1):19. PubMed ID: 36131326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HiCRep.py: fast comparison of Hi-C contact matrices in Python.
    Lin D; Sanders J; Noble WS
    Bioinformatics; 2021 Sep; 37(18):2996-2997. PubMed ID: 33576390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.