These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 37498561)

  • 21. Reference panel-guided super-resolution inference of Hi-C data.
    Zhang Y; Blanchette M
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i386-i393. PubMed ID: 37387127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HiCDiff: single-cell Hi-C data denoising with diffusion models.
    Wang Y; Cheng J
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38856167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extending partial haplotypes to full genome haplotypes using chromosome conformation capture data.
    Ben-Elazar S; Chor B; Yakhini Z
    Bioinformatics; 2016 Sep; 32(17):i559-i566. PubMed ID: 27587675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HiCNN2: Enhancing the Resolution of Hi-C Data Using an Ensemble of Convolutional Neural Networks.
    Liu T; Wang Z
    Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31671634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DiffDomain enables identification of structurally reorganized topologically associating domains.
    Hua D; Gu M; Zhang X; Du Y; Xie H; Qi L; Du X; Bai Z; Zhu X; Tian D
    Nat Commun; 2024 Jan; 15(1):502. PubMed ID: 38218905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. scHiCEmbed: Bin-Specific Embeddings of Single-Cell Hi-C Data Using Graph Auto-Encoders.
    Liu T; Wang Z
    Genes (Basel); 2022 Jun; 13(6):. PubMed ID: 35741810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. StackTADB: a stacking-based ensemble learning model for predicting the boundaries of topologically associating domains (TADs) accurately in fruit flies.
    Wu H; Zhang P; Ai Z; Wei L; Zhang H; Yang F; Cui L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35181793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D.
    Zheng Y; Shen S; Keleş S
    Genome Biol; 2022 Oct; 23(1):222. PubMed ID: 36253828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model.
    Fang T; Liu Y; Woicik A; Lu M; Jha A; Wang X; Li G; Hristov B; Liu Z; Xu H; Noble WS; Wang S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i471-i480. PubMed ID: 38940142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HiC-spector: a matrix library for spectral and reproducibility analysis of Hi-C contact maps.
    Yan KK; Yardimci GG; Yan C; Noble WS; Gerstein M
    Bioinformatics; 2017 Jul; 33(14):2199-2201. PubMed ID: 28369339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HiC1Dmetrics: framework to extract various one-dimensional features from chromosome structure data.
    Wang J; Nakato R
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34850813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus.
    Zhang Y; An L; Xu J; Zhang B; Zheng WJ; Hu M; Tang J; Yue F
    Nat Commun; 2018 Feb; 9(1):750. PubMed ID: 29467363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. preciseTAD: a transfer learning framework for 3D domain boundary prediction at base-pair resolution.
    Stilianoudakis SC; Marshall MA; Dozmorov MG
    Bioinformatics; 2022 Jan; 38(3):621-630. PubMed ID: 34741515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HiTea: a computational pipeline to identify non-reference transposable element insertions in Hi-C data.
    Jain D; Chu C; Alver BH; Lee S; Lee EA; Park PJ
    Bioinformatics; 2021 May; 37(8):1045-1051. PubMed ID: 33136153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Be-1DCNN: a neural network model for chromatin loop prediction based on bagging ensemble learning.
    Wu H; Zhou B; Zhou H; Zhang P; Wang M
    Brief Funct Genomics; 2023 Nov; 22(5):475-484. PubMed ID: 37133976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LPAD: using network construction and label propagation to detect topologically associating domains from Hi-C data.
    Liu J; Li P; Sun J; Guo J
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37139561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PHi-C2: interpreting Hi-C data as the dynamic 3D genome state.
    Shinkai S; Itoga H; Kyoda K; Onami S
    Bioinformatics; 2022 Oct; 38(21):4984-4986. PubMed ID: 36087002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromosome Conformation Capture Followed by Genome-Wide Sequencing (Hi-C) in Drosophila Embryos.
    Cardamone F; Zhan Y; Iovino N; Zenk F
    Methods Mol Biol; 2023; 2655():41-55. PubMed ID: 37212987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. scGrapHiC: deep learning-based graph deconvolution for Hi-C using single cell gene expression.
    Murtaza G; Butaney B; Wagner J; Singh R
    Bioinformatics; 2024 Jun; 40(Supplement_1):i490-i500. PubMed ID: 38940151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BART3D: inferring transcriptional regulators associated with differential chromatin interactions from Hi-C data.
    Wang Z; Zhang Y; Zang C
    Bioinformatics; 2021 Sep; 37(18):3075-3078. PubMed ID: 33720325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.