These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37498561)

  • 41. Computational Analysis of Hi-C Data.
    Forcato M; Bicciato S
    Methods Mol Biol; 2021; 2157():103-125. PubMed ID: 32820401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of computational methods for 3D genome analysis at single-cell Hi-C level.
    Li X; An Z; Zhang Z
    Methods; 2020 Oct; 181-182():52-61. PubMed ID: 31445093
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methods for the Differential Analysis of Hi-C Data.
    Nicoletti C
    Methods Mol Biol; 2022; 2301():61-95. PubMed ID: 34415531
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploring chromatin conformation and gene co-expression through graph embedding.
    Varrone M; Nanni L; Ciriello G; Ceri S
    Bioinformatics; 2020 Dec; 36(Suppl_2):i700-i708. PubMed ID: 33381846
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GenomeFlow: a comprehensive graphical tool for modeling and analyzing 3D genome structure.
    Trieu T; Oluwadare O; Wopata J; Cheng J
    Bioinformatics; 2019 Apr; 35(8):1416-1418. PubMed ID: 30215673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calculation of 3D genome structures for comparison of chromosome conformation capture experiments with microscopy: An evaluation of single-cell Hi-C protocols.
    Lando D; Stevens TJ; Basu S; Laue ED
    Nucleus; 2018 Jan; 9(1):190-201. PubMed ID: 29431585
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PHi-C: deciphering Hi-C data into polymer dynamics.
    Shinkai S; Nakagawa M; Sugawara T; Togashi Y; Ochiai H; Nakato R; Taniguchi Y; Onami S
    NAR Genom Bioinform; 2020 Jun; 2(2):lqaa020. PubMed ID: 33575580
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ProbC: joint modeling of epigenome and transcriptome effects in 3D genome.
    Sefer E
    BMC Genomics; 2022 Apr; 23(1):287. PubMed ID: 35397520
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MOGEN: a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data.
    Trieu T; Cheng J
    Bioinformatics; 2016 May; 32(9):1286-92. PubMed ID: 26722115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. HiConfidence: a novel approach uncovering the biological signal in Hi-C data affected by technical biases.
    Kobets VA; Ulianov SV; Galitsyna AA; Doronin SA; Mikhaleva EA; Gelfand MS; Shevelyov YY; Razin SV; Khrameeva EE
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36759336
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advantages of using graph databases to explore chromatin conformation capture experiments.
    D'Agostino D; Liò P; Aldinucci M; Merelli I
    BMC Bioinformatics; 2021 Apr; 22(Suppl 2):43. PubMed ID: 33902433
    [TBL] [Abstract][Full Text] [Related]  

  • 52. HiCORE: Hi-C Analysis for Identification of Core Chromatin Looping Regions with Higher Resolution.
    Lee H; Seo PJ
    Mol Cells; 2021 Dec; 44(12):883-892. PubMed ID: 34963105
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data.
    Kruse K; Hug CB; Vaquerizas JM
    Genome Biol; 2020 Dec; 21(1):303. PubMed ID: 33334380
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measuring the reproducibility and quality of Hi-C data.
    Yardımcı GG; Ozadam H; Sauria MEG; Ursu O; Yan KK; Yang T; Chakraborty A; Kaul A; Lajoie BR; Song F; Zhan Y; Ay F; Gerstein M; Kundaje A; Li Q; Taylor J; Yue F; Dekker J; Noble WS
    Genome Biol; 2019 Mar; 20(1):57. PubMed ID: 30890172
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reconstructing high-resolution chromosome three-dimensional structures by Hi-C complex networks.
    Liu T; Wang Z
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):496. PubMed ID: 30591009
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Benchmark of software tools for prokaryotic chromosomal interaction domain identification.
    Magnitov MD; Kuznetsova VS; Ulianov SV; Razin SV; Tyakht AV
    Bioinformatics; 2020 Nov; 36(17):4560-4567. PubMed ID: 32492116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SpectralTAD: an R package for defining a hierarchy of topologically associated domains using spectral clustering.
    Cresswell KG; Stansfield JC; Dozmorov MG
    BMC Bioinformatics; 2020 Jul; 21(1):319. PubMed ID: 32689928
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Be-1DCNN: a neural network model for chromatin loop prediction based on bagging ensemble learning.
    Wu H; Zhou B; Zhou H; Zhang P; Wang M
    Brief Funct Genomics; 2023 Nov; 22(5):475-484. PubMed ID: 37133976
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Capturing Three-Dimensional Genome Organization in Individual Cells by Single-Cell Hi-C.
    Nagano T; Wingett SW; Fraser P
    Methods Mol Biol; 2017; 1654():79-97. PubMed ID: 28986784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.