These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 3749868)

  • 1. 1H NMR investigation of the binding of methyl-beta-D-galactoses with sialic acid residues on hepatic binding protein--the effect of divalent calcium ions.
    Wang JF
    Sci Sin B; 1986 Feb; 29(2):156-64. PubMed ID: 3749868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR-studies of the interaction of metal ions with poly(1,4-hexuronates). IV. Proton magnetic resonance study of lanthanide binding to sodium methyl alpha-D-galactopyranosiduronate in aqueous solutions.
    Grasdalen H; Anthonsen T; Larsen B; Smidsrød O
    Acta Chem Scand B; 1975; 29(1):99-108. PubMed ID: 1146456
    [No Abstract]   [Full Text] [Related]  

  • 3. Interaction of the lacZ beta-galactosidase of Escherichia coli with some beta-D-galactopyranoside competitive inhibitors.
    Loeffler RS; Sinnott ML; Sykes BD; Withers SG
    Biochem J; 1979 Jan; 177(1):145-52. PubMed ID: 106843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of individual mgl gene products in the beta-methylgalactoside transport system of Escherichia coli K12.
    Robbins AR; Guzman R; Rotman B
    J Biol Chem; 1976 May; 251(10):3112-6. PubMed ID: 773938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and magnetic resonance studies of substrate binding to galactose oxidase copper(II).
    Winkler ME; Bereman RD; Kurland RJ
    J Inorg Biochem; 1981 Jun; 14(3):223-35. PubMed ID: 6267193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of the entry and exit reactions of the beta-methyl galactoside transport system in Escherichia coli.
    Wilson DB
    J Bacteriol; 1976 Jun; 126(3):1156-65. PubMed ID: 780342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR analysis of carbohydrate-binding interactions in solution: an approach using analysis of saturation transfer difference NMR spectroscopy.
    Hemmi H
    Methods Mol Biol; 2014; 1200():501-9. PubMed ID: 25117260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STD NMR spectroscopy and molecular modeling investigation of the binding of N-acetylneuraminic acid derivatives to rhesus rotavirus VP8* core.
    Haselhorst T; Blanchard H; Frank M; Kraschnefski MJ; Kiefel MJ; Szyczew AJ; Dyason JC; Fleming F; Holloway G; Coulson BS; von Itzstein M
    Glycobiology; 2007 Jan; 17(1):68-81. PubMed ID: 16973731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12.
    Robbins AR; Rotman B
    Proc Natl Acad Sci U S A; 1975 Feb; 72(2):423-7. PubMed ID: 1091926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of uncoupler on "downhill" substrate efflux of Escherichia coli is dependent on (Mg2+, Ca2+). Adenosine triphosphatase.
    Rotman B
    J Cell Physiol; 1976 Dec; 89(4):561-6. PubMed ID: 137904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Participation of the ring oxygen in sugar interaction with transporters at renal tubular surfaces.
    Silverman M
    Biochim Biophys Acta; 1980 Aug; 600(2):502-12. PubMed ID: 7407125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor.
    Meier M; Bider MD; Malashkevich VN; Spiess M; Burkhard P
    J Mol Biol; 2000 Jul; 300(4):857-65. PubMed ID: 10891274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 1H and 19F nuclear magnetic resonance spectroscopy.
    Heintz D; Kany H; Kalbitzer HR
    Biochemistry; 1996 Oct; 35(39):12686-93. PubMed ID: 8841112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo estimates of hepatic binding protein concentration: correlation with classical indicators of hepatic functional reserve.
    Kudo M; Vera DR; Stadalnik RC; Trudeau WL; Ikekubo K; Todo A
    Am J Gastroenterol; 1990 Sep; 85(9):1142-8. PubMed ID: 2389727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bromine oxidation of methyl alpha- and beta-pyranosides of D-galactose, D-glucose, and D-mannose.
    Larm O; Scholander E; Theander O
    Carbohydr Res; 1976 Jul; 49():69-77. PubMed ID: 9199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biochemical and genetic basis for high frequency thiomethyl galactoside resistance in lambda,lambdadg lysogens of Escherichia coli.
    Raney ME; Elliott RW
    J Gen Microbiol; 1978 Feb; 104(2):287-97. PubMed ID: 344832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tc-99m galactosyl-neoglycoalbumin: in vitro characterization of receptor-mediated binding.
    Vera DR; Krohn KA; Stadalnik RC; Scheibe PO
    J Nucl Med; 1984 Jul; 25(7):779-87. PubMed ID: 6737077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of rat peritoneal macrophages with homologous sialidase-treated thrombocytes in vitro: biochemical and morphological studies. Detection of N-(O-acetyl)glycoloylneuraminic acid.
    Kluge A; Reuter G; Lee H; Ruch-Heeger B; Schauer R
    Eur J Cell Biol; 1992 Oct; 59(1):12-20. PubMed ID: 1334832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In the immature mouse, Pseudomonas aeruginosa pili bind a 57-kd (alpha 2-6) sialylated corneal epithelial cell surface protein: a first step in infection.
    Hazlett L; Rudner X; Masinick S; Ireland M; Gupta S
    Invest Ophthalmol Vis Sci; 1995 Mar; 36(3):634-43. PubMed ID: 7890494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of sialic acid in the functional activity and the hepatic clearance of C1-INH.
    Minta JO
    J Immunol; 1981 Jan; 126(1):245-9. PubMed ID: 7451969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.