These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37498801)

  • 1. Screening Platform for Promising Na Superionic Conductors for Na-Ion Solid-State Electrolytes.
    Kim J; Kang S; Min K
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41417-41425. PubMed ID: 37498801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revolutionizing Solid-State NASICON Sodium Batteries: Enhanced Ionic Conductivity Estimation through Multivariate Experimental Parameters Leveraging Machine Learning.
    Zhang Y; Zhan T; Sun Y; Lu L; Chen B
    ChemSusChem; 2024 Mar; 17(6):e202301284. PubMed ID: 37934454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium Ion Diffusion in Nasicon (Na
    Park H; Jung K; Nezafati M; Kim CS; Kang B
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27814-27824. PubMed ID: 27700032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na superionic conductor-type LiZr
    Nakayama M; Nakano K; Harada M; Tanibata N; Takeda H; Noda Y; Kobayashi R; Karasuyama M; Takeuchi I; Kotobuki M
    Chem Commun (Camb); 2022 Aug; 58(67):9328-9340. PubMed ID: 35950409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress on Dominant Sulfide-Type Solid-State Na Superionic Conductors for Solid-State Sodium Batteries.
    Guo X; Halacoglu S; Chen Y; Wang H
    Small; 2024 Aug; 20(33):e2311195. PubMed ID: 38775620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-entropy mechanism to boost ionic conductivity.
    Zeng Y; Ouyang B; Liu J; Byeon YW; Cai Z; Miara LJ; Wang Y; Ceder G
    Science; 2022 Dec; 378(6626):1320-1324. PubMed ID: 36548421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Auxiliary for the Progress of Sodium-Ion Solid-State Electrolytes.
    Yang K; Liu D; Qian Z; Jiang D; Wang R
    ACS Nano; 2021 Nov; 15(11):17232-17246. PubMed ID: 34705436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid electrolytes for solid-state Li/Na-metal batteries: inorganic, composite and polymeric materials.
    Song S; Hu N; Lu L
    Chem Commun (Camb); 2022 Oct; 58(86):12035-12045. PubMed ID: 36250501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yttrium-Sodium Halides as Promising Solid-State Electrolytes with High Ionic Conductivity and Stability for Na-Ion Batteries.
    Qie Y; Wang S; Fu S; Xie H; Sun Q; Jena P
    J Phys Chem Lett; 2020 May; 11(9):3376-3383. PubMed ID: 32282213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Ion Transport Mechanism and Electrochemical Stability of Trivalent Metal Iodide-based Na Superionic Conductors Na
    Huang H; Chi C; Zhang J; Zheng X; Wu Y; Shen J; Wang X; Wang S
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36864-36874. PubMed ID: 35938862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Na(+) Superionic Conductor for Room-Temperature Sodium Batteries.
    Song S; Duong HM; Korsunsky AM; Hu N; Lu L
    Sci Rep; 2016 Aug; 6():32330. PubMed ID: 27572915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries.
    Lin X; Zhang S; Yang M; Xiao B; Zhao Y; Luo J; Fu J; Wang C; Li X; Li W; Yang F; Duan H; Liang J; Fu B; Abdolvand H; Guo J; King G; Sun X
    Nat Mater; 2024 Oct; ():. PubMed ID: 39354087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design principles for NASICON super-ionic conductors.
    Wang J; He T; Yang X; Cai Z; Wang Y; Lacivita V; Kim H; Ouyang B; Ceder G
    Nat Commun; 2023 Aug; 14(1):5210. PubMed ID: 37626068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiperovskite Electrolytes for Solid-State Batteries.
    Xia W; Zhao Y; Zhao F; Adair K; Zhao R; Li S; Zou R; Zhao Y; Sun X
    Chem Rev; 2022 Feb; 122(3):3763-3819. PubMed ID: 35015520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design principles for sodium superionic conductors.
    Wang S; Fu J; Liu Y; Saravanan RS; Luo J; Deng S; Sham TK; Sun X; Mo Y
    Nat Commun; 2023 Nov; 14(1):7615. PubMed ID: 37993459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries.
    Forsyth M; Porcarelli L; Wang X; Goujon N; Mecerreyes D
    Acc Chem Res; 2019 Mar; 52(3):686-694. PubMed ID: 30801170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning collective anion motion enables superionic conductivity in solid-state halide electrolytes.
    Liu Z; Chien PH; Wang S; Song S; Lu M; Chen S; Xia S; Liu J; Mo Y; Chen H
    Nat Chem; 2024 Oct; 16(10):1584-1591. PubMed ID: 39313631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Design of Lithium Chloride Superionic Conductors for All-Solid-State High-Voltage Lithium-Ion Batteries.
    Park D; Park H; Lee Y; Kim SO; Jung HG; Chung KY; Shim JH; Yu S
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34806-34814. PubMed ID: 32643369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Superionic Conduction and Favorable Decomposition Products in the Crystalline Lithium-Boron-Sulfur System: A New Mechanism for Stabilizing Solid Li-Ion Electrolytes.
    Sendek AD; Antoniuk ER; Cubuk ED; Ransom B; Francisco BE; Buettner-Garrett J; Cui Y; Reed EJ
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):37957-37966. PubMed ID: 32700896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.