These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37498946)

  • 1. The application of an isotropic crushable foam model to predict the femoral fracture risk.
    Soltanihafshejani N; Peroni F; Toniutti S; Bitter T; Tanck E; Eggermont F; Verdonschot N; Janssen D
    PLoS One; 2023; 18(7):e0288776. PubMed ID: 37498946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental hip fracture load can be predicted from plain radiography by combined analysis of trabecular bone structure and bone geometry.
    Pulkkinen P; Jämsä T; Lochmüller EM; Kuhn V; Nieminen MT; Eckstein F
    Osteoporos Int; 2008 Apr; 19(4):547-58. PubMed ID: 17891327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical evaluation of dual-energy X-ray absorptiometry for predicting fracture loads of the infant femur for injury investigation: an in vitro porcine model.
    Pierce MC; Valdevit A; Anderson L; Inoue N; Hauser DL
    J Orthop Trauma; 2000 Nov; 14(8):571-6. PubMed ID: 11149504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a crushable foam model for human trabecular bone.
    Soltanihafshejani N; Bitter T; Janssen D; Verdonschot N
    Med Eng Phys; 2021 Oct; 96():53-63. PubMed ID: 34565553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuzzy logic structure analysis of trabecular bone of the calcaneus to estimate proximal femur fracture load and discriminate subjects with and without vertebral fractures using high-resolution magnetic resonance imaging at 1.5 T and 3 T.
    Patel PV; Eckstein F; Carballido-Gamio J; Phan C; Matsuura M; Lochmüller EM; Majumdar S; Link TM
    Calcif Tissue Int; 2007 Oct; 81(4):294-304. PubMed ID: 17705050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femoral neck trabecular bone: loss with aging and role in preventing fracture.
    Thomas CD; Mayhew PM; Power J; Poole KE; Loveridge N; Clement JG; Burgoyne CJ; Reeve J
    J Bone Miner Res; 2009 Nov; 24(11):1808-18. PubMed ID: 19419312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture prediction for the proximal femur using finite element models: Part II--Nonlinear analysis.
    Lotz JC; Cheal EJ; Hayes WC
    J Biomech Eng; 1991 Nov; 113(4):361-5. PubMed ID: 1762431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femoral bone mineral density distribution is dominantly regulated by strain energy density in remodeling.
    Zhang Y; Luo Y
    Biomed Mater Eng; 2020; 31(3):179-190. PubMed ID: 32597795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ex Vivo Evaluation of Hip Fracture Risk by Proximal Femur Geometry and Bone Mineral Density in Elderly Chinese Women.
    Yang XJ; Sang HX; Bai B; Ma XY; Xu C; Lei W; Zhang Y
    Med Sci Monit; 2018 Oct; 24():7438-7443. PubMed ID: 30334549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertebral and femoral bone mineral density and bone strength in prostate cancer patients assessed in phantomless PET/CT examinations.
    Schwaiger BJ; Kopperdahl DL; Nardo L; Facchetti L; Gersing AS; Neumann J; Lee KJ; Keaveny TM; Link TM
    Bone; 2017 Aug; 101():62-69. PubMed ID: 28442297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vivo assessment of femoral bone strength using Finite Element Analysis (FEA) based on routine MDCT imaging: a preliminary study on patients with vertebral fractures.
    Liebl H; Garcia EG; Holzner F; Noel PB; Burgkart R; Rummeny EJ; Baum T; Bauer JS
    PLoS One; 2015; 10(2):e0116907. PubMed ID: 25723187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nail rigidity on fracture healing. Strength and mineralisation in rat femoral bone.
    Utvåg SE; Reikerås O
    Arch Orthop Trauma Surg; 1998; 118(1-2):7-13. PubMed ID: 9833097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DXA predictions of human femoral mechanical properties depend on the load configuration.
    Dall'Ara E; Luisier B; Schmidt R; Pretterklieber M; Kainberger F; Zysset P; Pahr D
    Med Eng Phys; 2013 Nov; 35(11):1564-72; discussion 1564. PubMed ID: 23684578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alendronate treatment of the brtl osteogenesis imperfecta mouse improves femoral geometry and load response before fracture but decreases predicted material properties and has detrimental effects on osteoblasts and bone formation.
    Uveges TE; Kozloff KM; Ty JM; Ledgard F; Raggio CL; Gronowicz G; Goldstein SA; Marini JC
    J Bone Miner Res; 2009 May; 24(5):849-59. PubMed ID: 19113917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Influence of High-Impact Exercise on Cortical and Trabecular Bone Mineral Content and 3D Distribution Across the Proximal Femur in Older Men: A Randomized Controlled Unilateral Intervention.
    Allison SJ; Poole KE; Treece GM; Gee AH; Tonkin C; Rennie WJ; Folland JP; Summers GD; Brooke-Wavell K
    J Bone Miner Res; 2015 Sep; 30(9):1709-16. PubMed ID: 25753495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trabecular homogeneity index derived from plain radiograph to evaluate bone quality.
    Thevenot J; Hirvasniemi J; Finnilä M; Pulkkinen P; Kuhn V; Link T; Eckstein F; Jämsä T; Saarakkala S
    J Bone Miner Res; 2013 Dec; 28(12):2584-91. PubMed ID: 23677814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is bone-cement augmentation of screw-anchor fixation systems superior in unstable femoral neck fractures? A biomechanical cadaveric study.
    Knobe M; Bettag S; Kammerlander C; Altgassen S; Maier KJ; Nebelung S; Prescher A; Horst K; Pishnamaz M; Herren C; Mundt M; Stoffel M; Markert B; Gueorguiev B
    Injury; 2019 Feb; 50(2):292-300. PubMed ID: 30473370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic variation in mice affects closed femoral fracture pattern outcomes.
    Bartnikowski M; Bartnikowski N; Woloszyk A; Matthys R; Glatt V
    Injury; 2019 Mar; 50(3):639-647. PubMed ID: 30799099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pQCT bone strength index may serve as a better predictor than bone mineral density for long bone breaking strength.
    Siu WS; Qin L; Leung KS
    J Bone Miner Metab; 2003; 21(5):316-22. PubMed ID: 12928834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body.
    Kinzl M; Wolfram U; Pahr DH
    J Mech Behav Biomed Mater; 2013 Oct; 26():136-47. PubMed ID: 23768961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.