These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37499217)

  • 1. Identifying, Characterizing, and Engineering a Phenolic Acid-Responsive Transcriptional Factor from
    Li C; Zhou Y; Zou Y; Jiang T; Gong X; Yan Y
    ACS Synth Biol; 2023 Aug; 12(8):2382-2392. PubMed ID: 37499217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of a
    Jiang T; Li C; Yan Y
    ACS Synth Biol; 2021 Jan; 10(1):132-144. PubMed ID: 33378169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.
    Mannan AA; Liu D; Zhang F; Oyarzún DA
    ACS Synth Biol; 2017 Oct; 6(10):1851-1859. PubMed ID: 28763198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of a genome-reduced strain Bacillus amyloliquefaciens for enhancing surfactin production.
    Zhang F; Huo K; Song X; Quan Y; Wang S; Zhang Z; Gao W; Yang C
    Microb Cell Fact; 2020 Dec; 19(1):223. PubMed ID: 33287813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription.
    Younger AK; Dalvie NC; Rottinghaus AG; Leonard JN
    ACS Synth Biol; 2017 Feb; 6(2):311-325. PubMed ID: 27744683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR.
    Park SC; Kwak YM; Song WS; Hong M; Yoon SI
    Nucleic Acids Res; 2017 Dec; 45(22):13080-13093. PubMed ID: 29136175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in
    Dabirian Y; Li X; Chen Y; David F; Nielsen J; Siewers V
    ACS Synth Biol; 2019 Sep; 8(9):1968-1975. PubMed ID: 31373795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenolic acid-mediated regulation of the padC gene, encoding the phenolic acid decarboxylase of Bacillus subtilis.
    Tran NP; Gury J; Dartois V; Nguyen TK; Seraut H; Barthelmebs L; Gervais P; Cavin JF
    J Bacteriol; 2008 May; 190(9):3213-24. PubMed ID: 18326577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization.
    Dang Y; Zhao F; Liu X; Fan X; Huang R; Gao W; Wang S; Yang C
    Microb Cell Fact; 2019 Apr; 18(1):68. PubMed ID: 30971238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and biochemical analysis of PadR-padC promoter interactions during the phenolic acid stress response in Bacillus subtilis 168.
    Nguyen TK; Tran NP; Cavin JF
    J Bacteriol; 2011 Aug; 193(16):4180-91. PubMed ID: 21685295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of a Novel Bioactive Metabolite of Spermidine from
    Zou D; Li L; Min Y; Ji A; Liu Y; Wei X; Wang J; Wen Z
    J Agric Food Chem; 2021 Jan; 69(1):267-274. PubMed ID: 33356220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of levan production in Bacillus amyloliquefaciens through metabolic optimization of regulatory elements.
    Gu Y; Zheng J; Feng J; Cao M; Gao W; Quan Y; Dang Y; Wang Y; Wang S; Song C
    Appl Microbiol Biotechnol; 2017 May; 101(10):4163-4174. PubMed ID: 28197690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination and optimization of a strong promoter element from Bacillus amyloliquefaciens by using a promoter probe vector.
    Liao Y; Wang B; Ye Y; Pan L
    Biotechnol Lett; 2018 Jan; 40(1):119-126. PubMed ID: 29101598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of a Biosensor in Response to Malate in
    Zhang Y; Li Y; Xiao F; Wang H; Zhang L; Ding Z; Xu S; Gu Z; Shi G
    ACS Synth Biol; 2021 Jul; 10(7):1775-1784. PubMed ID: 34213891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
    De Paepe B; Maertens J; Vanholme B; De Mey M
    ACS Synth Biol; 2018 May; 7(5):1303-1314. PubMed ID: 29688705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Growth Dependent Design Constraints of Transcription-Factor-Based Metabolite Biosensors.
    Hartline CJ; Zhang F
    ACS Synth Biol; 2022 Jul; 11(7):2247-2258. PubMed ID: 35700119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, Evolution, and Characterization of a Xylose Biosensor in
    Tang RQ; Wagner JM; Alper HS; Zhao XQ; Bai FW
    ACS Synth Biol; 2020 Oct; 9(10):2714-2722. PubMed ID: 32886884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Applications of Promoter-gene-Engineered Biosensors.
    Feng Y; Xie Z; Jiang X; Li Z; Shen Y; Wang B; Liu J
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-γ-glutamic acid synthesis.
    Gao W; He Y; Zhang F; Zhao F; Huang C; Zhang Y; Zhao Q; Wang S; Yang C
    Microb Biotechnol; 2019 Sep; 12(5):932-945. PubMed ID: 31219230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.