These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37499261)

  • 1. It Takes Tau to Tango: Investigating the Fuzzy Interaction between the R2-Repeat Domain and Tubulin C-Terminal Tails.
    Marien J; Prévost C; Sacquin-Mora S
    Biochemistry; 2023 Aug; 62(16):2492-2502. PubMed ID: 37499261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility and Core-Protein Binding Patterns of Disordered C-Terminal Tails in β-Tubulin Isotypes.
    Laurin Y; Eyer J; Robert CH; Prevost C; Sacquin-Mora S
    Biochemistry; 2017 Mar; 56(12):1746-1756. PubMed ID: 28290671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential binding affinity of tau repeat region R2 with neuronal-specific β-tubulin isotypes.
    Bhandare VV; Kumbhar BV; Kunwar A
    Sci Rep; 2019 Jul; 9(1):10795. PubMed ID: 31346240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence diversity of tubulin isotypes in regulation of the mitochondrial voltage-dependent anion channel.
    Rostovtseva TK; Gurnev PA; Hoogerheide DP; Rovini A; Sirajuddin M; Bezrukov SM
    J Biol Chem; 2018 Jul; 293(28):10949-10962. PubMed ID: 29777059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau.
    Goode BL; Feinstein SC
    J Cell Biol; 1994 Mar; 124(5):769-82. PubMed ID: 8120098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational analysis of the carboxy-terminal tails of human beta-tubulin isotypes.
    Luchko T; Huzil JT; Stepanova M; Tuszynski J
    Biophys J; 2008 Mar; 94(6):1971-82. PubMed ID: 17993481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers.
    Kadavath H; Hofele RV; Biernat J; Kumar S; Tepper K; Urlaub H; Mandelkow E; Zweckstetter M
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7501-6. PubMed ID: 26034266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microtubule-associated protein tau cross-links to two distinct sites on each alpha and beta tubulin monomer via separate domains.
    Chau MF; Radeke MJ; de Inés C; Barasoain I; Kohlstaedt LA; Feinstein SC
    Biochemistry; 1998 Dec; 37(51):17692-703. PubMed ID: 9922135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis reveals novel and discrete functions for tubulin carboxy-terminal tails.
    Aiken J; Sept D; Costanzo M; Boone C; Cooper JA; Moore JK
    Curr Biol; 2014 Jun; 24(12):1295-1303. PubMed ID: 24835459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of tubulin C-terminal tail on mechanical properties of microtubule.
    Nowroz S; Nasrin SR; Kabir AMR; Yamashita T; Kusumoto T; Taira J; Tani M; Ichikawa M; Sada K; Kakugo A
    Biochem Biophys Res Commun; 2024 Apr; 706():149761. PubMed ID: 38479245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol.
    Kar S; Fan J; Smith MJ; Goedert M; Amos LA
    EMBO J; 2003 Jan; 22(1):70-7. PubMed ID: 12505985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidized and phosphorylated synthetic peptides corresponding to the second and third tubulin-binding repeats of the tau protein reveal structural features of paired helical filament assembly.
    Hoffmann R; Dawson NF; Wade JD; Otvös L
    J Pept Res; 1997 Aug; 50(2):132-42. PubMed ID: 9273897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of tau-microtubule interaction using FRET.
    Di Maïo IL; Barbier P; Allegro D; Brault C; Peyrot V
    Int J Mol Sci; 2014 Aug; 15(8):14697-714. PubMed ID: 25196605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau.
    Panda D; Goode BL; Feinstein SC; Wilson L
    Biochemistry; 1995 Sep; 34(35):11117-27. PubMed ID: 7669769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic identification of tubulin-interacting fragments of the microtubule-associated protein Tau leads to a highly efficient promoter of microtubule assembly.
    Fauquant C; Redeker V; Landrieu I; Wieruszeski JM; Verdegem D; Laprévote O; Lippens G; Gigant B; Knossow M
    J Biol Chem; 2011 Sep; 286(38):33358-68. PubMed ID: 21757739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific macromolecular interactions between tau and the microtubule system.
    Farías GA; Vial C; Maccioni RB
    Mol Cell Biochem; 1992 May; 112(1):81-8. PubMed ID: 1513337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Tale of 12 Tails: Katanin Severing Activity Affected by Carboxy-Terminal Tail Sequences.
    Lindsay KA; Abdelhamid N; Kahawatte S; Dima RI; Sackett DL; Finegan TM; Ross JL
    Biomolecules; 2023 Mar; 13(4):. PubMed ID: 37189368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tau induces ring and microtubule formation from alphabeta-tubulin dimers under nonassembly conditions.
    Devred F; Barbier P; Douillard S; Monasterio O; Andreu JM; Peyrot V
    Biochemistry; 2004 Aug; 43(32):10520-31. PubMed ID: 15301550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous Tau-Tubulin Complexes Accelerate Microtubule Polymerization.
    Li XH; Rhoades E
    Biophys J; 2017 Jun; 112(12):2567-2574. PubMed ID: 28636913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.