These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Label-Free Surface-Enhanced Raman Spectroscopy Biosensor for On-Site Breast Cancer Detection Using Human Tears. Kim S; Kim TG; Lee SH; Kim W; Bang A; Moon SW; Song J; Shin JH; Yu JS; Choi S ACS Appl Mater Interfaces; 2020 Feb; 12(7):7897-7904. PubMed ID: 31971765 [TBL] [Abstract][Full Text] [Related]
3. Designing of ordered two-dimensional gold nanoparticles film for cocaine detection in human urine using surface-enhanced Raman spectroscopy. Meng J; Tang X; Zhou B; Xie Q; Yang L Talanta; 2017 Mar; 164():693-699. PubMed ID: 28107992 [TBL] [Abstract][Full Text] [Related]
4. Multi-dimensional plasmonic coupling system for efficient enrichment and ultrasensitive label-free SERS detection of bilirubin based on graphene oxide-Au nanostars and Au@Ag nanoparticles. Zhao W; Yang S; Zhang D; Zhou T; Huang J; Gao M; Zhang X; Liu Y; Yang J J Colloid Interface Sci; 2023 Sep; 646():872-882. PubMed ID: 37235933 [TBL] [Abstract][Full Text] [Related]
5. A graphene oxide-gold nanostar hybrid based-paper biosensor for label-free SERS detection of serum bilirubin for diagnosis of jaundice. Pan X; Li L; Lin H; Tan J; Wang H; Liao M; Chen C; Shan B; Chen Y; Li M Biosens Bioelectron; 2019 Dec; 145():111713. PubMed ID: 31542676 [TBL] [Abstract][Full Text] [Related]
6. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles. Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007 [TBL] [Abstract][Full Text] [Related]
8. Surface-Enhanced Raman Spectroscopy Study of Fresh Human Urine: A Preliminary Study. Zheng B; Dong JC; Su LZ; Meng M; Zhang YJ; Li JF Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1987-91. PubMed ID: 30053365 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer. Kim WH; Lee JU; Jeon MJ; Park KH; Sim SJ Biosens Bioelectron; 2022 Jun; 205():114116. PubMed ID: 35235898 [TBL] [Abstract][Full Text] [Related]
10. Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer. Zhu W; Wen BY; Jie LJ; Tian XD; Yang ZL; Radjenovic PM; Luo SY; Tian ZQ; Li JF Biosens Bioelectron; 2020 Apr; 154():112067. PubMed ID: 32056962 [TBL] [Abstract][Full Text] [Related]
11. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva. Zheng P; Li M; Jurevic R; Cushing SK; Liu Y; Wu N Nanoscale; 2015 Jul; 7(25):11005-12. PubMed ID: 26008641 [TBL] [Abstract][Full Text] [Related]
12. Au nanoparticles functionalized 3D-MoS Singha SS; Mondal S; Bhattacharya TS; Das L; Sen K; Satpati B; Das K; Singha A Biosens Bioelectron; 2018 Nov; 119():10-17. PubMed ID: 30098461 [TBL] [Abstract][Full Text] [Related]
13. Influence of sandwich-type DNA construction strategy and plasmonic metal on signal generated by SERS DNA sensors. Pyrak E; Kowalczyk A; Weyher JL; Nowicka AM; Kudelski A Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jul; 295():122606. PubMed ID: 36934597 [TBL] [Abstract][Full Text] [Related]
14. Label-free and liquid state SERS detection of multi-scaled bioanalytes via light-induced pinpoint colloidal assembly. Han S; Park J; Moon S; Eom S; Jin CM; Kim S; Ryu YS; Choi Y; Lee JB; Choi I Biosens Bioelectron; 2024 Nov; 264():116663. PubMed ID: 39167886 [TBL] [Abstract][Full Text] [Related]
15. Silk fibroin-based wearable SERS biosensor for simultaneous sweat monitoring of creatinine and uric acid. Hu M; Zhu K; Wei J; Yang K; Wu L; Zong S; Wang Z Biosens Bioelectron; 2024 Dec; 265():116662. PubMed ID: 39180829 [TBL] [Abstract][Full Text] [Related]
16. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972 [TBL] [Abstract][Full Text] [Related]
17. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch. Masterson AN; Hati S; Ren G; Liyanage T; Manicke NE; Goodpaster JV; Sardar R Anal Chem; 2021 Feb; 93(4):2578-2588. PubMed ID: 33432809 [TBL] [Abstract][Full Text] [Related]
18. Surface plasmon-enhanced fluorescence and surface-enhanced Raman scattering dual-readout chip constructed with silver nanowires: Label-free clinical detection of direct-bilirubin. Sahoo SR; Huey-Jen Hsu S; Chou DA; Wang GJ; Chang CC Biosens Bioelectron; 2022 Oct; 213():114440. PubMed ID: 35667289 [TBL] [Abstract][Full Text] [Related]
19. Wearable SERS Sensor Based on Omnidirectional Plasmonic Nanovoids Array with Ultra-High Sensitivity and Stability. Zhu K; Yang K; Zhang Y; Yang Z; Qian Z; Li N; Li L; Jiang G; Wang T; Zong S; Wu L; Wang Z; Cui Y Small; 2022 Aug; 18(32):e2201508. PubMed ID: 35843883 [TBL] [Abstract][Full Text] [Related]
20. Triple-enhanced Raman scattering sensors from flexible MXene/Au nanocubes platform via attenuating the coffee ring effect. Liu X; Dang A; Li T; Lee TC; Sun Y; Liu Y; Ye F; Ma S; Yang Y; Deng W Biosens Bioelectron; 2023 Oct; 237():115531. PubMed ID: 37473547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]