These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37499527)

  • 1. Equations for estimating the static supportive torque provided by upper-limb exoskeletons.
    Watterworth MWB; Dharmaputra R; Porto R; Cort JA; La Delfa NJ
    Appl Ergon; 2023 Nov; 113():104092. PubMed ID: 37499527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of antigravitational support levels provided by a passive upper-limb occupational exoskeleton in repetitive arm movements.
    Ramella G; Grazi L; Giovacchini F; Trigili E; Vitiello N; Crea S
    Appl Ergon; 2024 May; 117():104226. PubMed ID: 38219374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Level of exoskeleton support influences shoulder elevation, external rotation and forearm pronation during simulated work tasks in females.
    McFarland TC; McDonald AC; Whittaker RL; Callaghan JP; Dickerson CR
    Appl Ergon; 2022 Jan; 98():103591. PubMed ID: 34628044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Passive Shoulder Exoskeleton Using Link Chains and Magnetic Spring Joints.
    Lee HH; Yoon KT; Lim HH; Lee WK; Jung JH; Kim SB; Choi YM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():708-717. PubMed ID: 38285587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Experimental Evaluation of a Semi-Passive Upper-Limb Exoskeleton for Workers With Motorized Tuning of Assistance.
    Grazi L; Trigili E; Proface G; Giovacchini F; Crea S; Vitiello N
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2276-2285. PubMed ID: 32755865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation].
    Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration and Testing of a High-Torque Servo-Driven Joint and Its Electronic Controller with Application in a Prototype Upper Limb Exoskeleton.
    Vélez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of two upper-limb exoskeletons during overhead work: influence of exoskeleton design and load on muscular adaptations and balance regulation.
    Desbrosses K; Schwartz M; Theurel J
    Eur J Appl Physiol; 2021 Oct; 121(10):2811-2823. PubMed ID: 34173059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A passive upper-limb exoskeleton reduced muscular loading during augmented reality interactions.
    Kong YK; Park SS; Shim JW; Choi KH; Shim HH; Kia K; Kim JH
    Appl Ergon; 2023 May; 109():103982. PubMed ID: 36739780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach to quantify the assistive torque profiles generated by passive back-support exoskeletons.
    Madinei S; Kim S; Park JH; Srinivasan D; Nussbaum MA
    J Biomech; 2022 Dec; 145():111363. PubMed ID: 36332510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a Payload Adjustment Device for an Unpowered Lower-Limb Exoskeleton.
    Yun J; Kang O; Joe HM
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis and control of the torque profile of the upper limb using a kinetic model and motion measurements.
    Abdul-Ameer HK
    Int J Artif Organs; 2022 Jul; 45(7):631-641. PubMed ID: 35603541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A passively safe cable driven upper limb rehabilitation exoskeleton.
    Chen Y; Fan J; Zhu Y; Zhao J; Cai H
    Technol Health Care; 2015; 23 Suppl 2():S197-202. PubMed ID: 26410484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of passive upper-limb exoskeletons in reducing musculoskeletal load associated with overhead tasks.
    Kong YK; Kim JH; Shim HH; Shim JW; Park SS; Choi KH
    Appl Ergon; 2023 May; 109():103965. PubMed ID: 36645995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using passive or active back-support exoskeletons during a repetitive lifting task: influence on cardiorespiratory parameters.
    Schwartz M; Desbrosses K; Theurel J; Mornieux G
    Eur J Appl Physiol; 2022 Dec; 122(12):2575-2583. PubMed ID: 36074202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, Development, and Functional Validation of a 3D-Printed Passive Upper Limb Exoskeleton.
    Urendes E; Sanchez C; Lerma-Lara S; Rojo A; Costa V; Raya R
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2503-2512. PubMed ID: 38980787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.