BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 37499908)

  • 1. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice.
    Chou WC; Chen Q; Yuan L; Cheng YH; He C; Monteiro-Riviere NA; Riviere JE; Lin Z
    J Control Release; 2023 Sep; 361():53-63. PubMed ID: 37499908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches.
    Lin Z; Chou WC; Cheng YH; He C; Monteiro-Riviere NA; Riviere JE
    Int J Nanomedicine; 2022; 17():1365-1379. PubMed ID: 35360005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling.
    Chou WC; Lin Z
    Toxicol Sci; 2023 Jan; 191(1):1-14. PubMed ID: 36156156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats.
    Chou WC; Cheng YH; Riviere JE; Monteiro-Riviere NA; Kreyling WG; Lin Z
    Part Fibre Toxicol; 2022 Jul; 19(1):47. PubMed ID: 35804418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review.
    Singh AV; Varma M; Laux P; Choudhary S; Datusalia AK; Gupta N; Luch A; Gandhi A; Kulkarni P; Nath B
    Arch Toxicol; 2023 Apr; 97(4):963-979. PubMed ID: 36878992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine.
    Singh AV; Ansari MHD; Rosenkranz D; Maharjan RS; Kriegel FL; Gandhi K; Kanase A; Singh R; Laux P; Luch A
    Adv Healthc Mater; 2020 Sep; 9(17):e1901862. PubMed ID: 32627972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A physiologically based pharmacokinetic model to predict pegylated liposomal doxorubicin disposition in rats and human.
    Montanha MC; Howarth A; Mohamed DA; Loier E; Main L; Rösslein M; Delmaar C; Prina-Mello A; Siccardi M
    Drug Deliv Transl Res; 2022 Sep; 12(9):2178-2186. PubMed ID: 35551629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach.
    Cheng YH; He C; Riviere JE; Monteiro-Riviere NA; Lin Z
    ACS Nano; 2020 Mar; 14(3):3075-3095. PubMed ID: 32078303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretable XGBoost-SHAP Model Predicts Nanoparticles Delivery Efficiency Based on Tumor Genomic Mutations and Nanoparticle Properties.
    Ma X; Tang Y; Wang C; Li Y; Zhang J; Luo Y; Xu Z; Wu F; Wang S
    ACS Appl Bio Mater; 2023 Oct; 6(10):4326-4335. PubMed ID: 37683105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content.
    Li M; Panagi Z; Avgoustakis K; Reineke J
    Int J Nanomedicine; 2012; 7():1345-56. PubMed ID: 22419876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating pharmacokinetic profiles of
    Pumkathin S; Hanlumyuang Y; Wattanathana W; Laomettachit T; Liangruksa M
    J Biopharm Stat; 2024 Jun; ():1-16. PubMed ID: 38860461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting pharmacodynamic effects through early drug discovery with artificial intelligence-physiologically based pharmacokinetic (AI-PBPK) modelling.
    Wu K; Li X; Zhou Z; Zhao Y; Su M; Cheng Z; Wu X; Huang Z; Jin X; Li J; Zhang M; Liu J; Liu B
    Front Pharmacol; 2024; 15():1330855. PubMed ID: 38434709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles.
    Carlander U; Li D; Jolliet O; Emond C; Johanson G
    Int J Nanomedicine; 2016; 11():625-40. PubMed ID: 26929620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning and Artificial Intelligence in Toxicological Sciences.
    Lin Z; Chou WC
    Toxicol Sci; 2022 Aug; 189(1):7-19. PubMed ID: 35861448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles.
    Kumar M; Kulkarni P; Liu S; Chemuturi N; Shah DK
    Adv Drug Deliv Rev; 2023 Mar; 194():114708. PubMed ID: 36682420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of
    Jayasinghe MK; Lee CY; Tran TTT; Tan R; Chew SM; Yeo BZJ; Loh WX; Pirisinu M; Le MTN
    Front Digit Health; 2022; 4():838590. PubMed ID: 35373184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endocytosis mechanism in physiologically-based pharmacokinetic modeling of nanoparticles.
    Deng L; Liu H; Ma Y; Miao Y; Fu X; Deng Q
    Toxicol Appl Pharmacol; 2019 Dec; 384():114765. PubMed ID: 31669777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Isoherranen N
    Drug Metab Dispos; 2024 Feb; ():. PubMed ID: 38326033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologically based pharmacokinetic modeling of (18)F-SiFAlin-Asp3-PEG1-TATE in AR42J tumor bearing mice.
    Maaß C; Rivas JR; Attarwala AA; Hardiansyah D; Niedermoser S; Litau S; Wängler C; Wängler B; Glatting G
    Nucl Med Biol; 2016 Apr; 43(4):243-6. PubMed ID: 27067044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.