These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37499972)

  • 21. Chronic inactivation of the contralesional hindlimb motor cortex after thoracic spinal cord hemisection impedes locomotor recovery in the rat.
    Brown AR; Martinez M
    Exp Neurol; 2021 Sep; 343():113775. PubMed ID: 34081986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks.
    Bellardita C; Kiehn O
    Curr Biol; 2015 Jun; 25(11):1426-36. PubMed ID: 25959968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disruption of fore- and hindlimb coordination during overground locomotion in cats with bilateral serial hemisection of the spinal cord.
    Kato M; Murakami S; Yasuda K; Hirayama H
    Neurosci Res; 1984 Dec; 2(1-2):27-47. PubMed ID: 6598834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The locomotion of the low spinal cat. II. Interlimb coordination.
    Forssberg H; Grillner S; Halbertsma J; Rossignol S
    Acta Physiol Scand; 1980 Mar; 108(3):283-95. PubMed ID: 7376923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry.
    Martinez M; Delivet-Mongrain H; Leblond H; Rossignol S
    J Neurophysiol; 2011 Oct; 106(4):1969-84. PubMed ID: 21775717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Studies on interlimb coordination of the cat during locomotion].
    Hirayama H
    Hokkaido Igaku Zasshi; 1985 Sep; 60(5):699-712. PubMed ID: 4077017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.
    Lemieux M; Josset N; Roussel M; Couraud S; Bretzner F
    Front Neurosci; 2016; 10():42. PubMed ID: 26941592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compensatory locomotor adjustments of rats with cervical or thoracic spinal cord hemisections.
    Webb AA; Muir GD
    J Neurotrauma; 2002 Feb; 19(2):239-56. PubMed ID: 11893025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ipsilesional Motor Cortex Plasticity Participates in Spontaneous Hindlimb Recovery after Lateral Hemisection of the Thoracic Spinal Cord in the Rat.
    Brown AR; Martinez M
    J Neurosci; 2018 Nov; 38(46):9977-9988. PubMed ID: 30301755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in forelimb-hindlimb coordination after partial spinal lesions of different extent in the rat.
    Górska T; Chojnicka-Gittins B; Majczyński H; Zmysłowski W
    Behav Brain Res; 2013 Feb; 239():121-38. PubMed ID: 23142611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different patterns of fore-hindlimb coordination during overground locomotion in cats with ventral and lateral spinal lesions.
    Bem T; Górska T; Majczyński H; Zmysłowski W
    Exp Brain Res; 1995; 104(1):70-80. PubMed ID: 7621942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.
    Züchner M; Kondratskaya E; Sylte CB; Glover JC; Boulland JL
    J Physiol; 2018 Jan; 596(2):281-303. PubMed ID: 29086918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forced exercise as a rehabilitation strategy after unilateral cervical spinal cord contusion injury.
    Sandrow-Feinberg HR; Izzi J; Shumsky JS; Zhukareva V; Houle JD
    J Neurotrauma; 2009 May; 26(5):721-31. PubMed ID: 19489718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dependence of gait pattern on the type of coupling between hind- and forelimb generators: modelling study.
    Zmysłowski W; Kasicki S
    Acta Neurobiol Exp (Wars); 1982; 42(2):175-82. PubMed ID: 7168378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recovery of function after spinal cord hemisection in newborn and adult rats: differential effects on reflex and locomotor function.
    Kunkel-Bagden E; Dai HN; Bregman BS
    Exp Neurol; 1992 Apr; 116(1):40-51. PubMed ID: 1559563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors.
    Fouad K; Rank MM; Vavrek R; Murray KC; Sanelli L; Bennett DJ
    J Neurophysiol; 2010 Dec; 104(6):2975-84. PubMed ID: 20861436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury.
    Shah PK; Garcia-Alias G; Choe J; Gad P; Gerasimenko Y; Tillakaratne N; Zhong H; Roy RR; Edgerton VR
    Brain; 2013 Nov; 136(Pt 11):3362-77. PubMed ID: 24103912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatio-temporal gait characteristics during transitions from trot to canter in horses.
    Nauwelaerts S; Aerts P; Clayton H
    Zoology (Jena); 2013 Aug; 116(4):197-204. PubMed ID: 23810157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordination of movements of the kindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats.
    Miller S; Van Der Burg J; Van Der Meché F
    Brain Res; 1975 Jun; 91(2):217-37. PubMed ID: 1164672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.