These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 37500042)
21. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. Rai S; Omar AF; Rehan M; Al-Turki A; Sagar A; Ilyas N; Sayyed RZ; Hasanuzzaman M Planta; 2022 Dec; 257(2):27. PubMed ID: 36583789 [TBL] [Abstract][Full Text] [Related]
22. New insights into engineered plant-microbe interactions for pesticide removal. Bhatt K; Suyal DC; Kumar S; Singh K; Goswami P Chemosphere; 2022 Dec; 309(Pt 2):136635. PubMed ID: 36183882 [TBL] [Abstract][Full Text] [Related]
23. Combined use of microbial consortia isolated from different agricultural soils and cyclodextrin as a bioremediation technique for herbicide contaminated soils. Villaverde J; Rubio-Bellido M; Lara-Moreno A; Merchan F; Morillo E Chemosphere; 2018 Feb; 193():118-125. PubMed ID: 29127836 [TBL] [Abstract][Full Text] [Related]
24. Metal-tolerant and siderophore producing Pseudomonas fluorescence and Trichoderma spp. improved the growth, biochemical features and yield attributes of chickpea by lowering Cd uptake. Syed A; Elgorban AM; Bahkali AH; Eswaramoorthy R; Iqbal RK; Danish S Sci Rep; 2023 Mar; 13(1):4471. PubMed ID: 36934106 [TBL] [Abstract][Full Text] [Related]
25. Developments in biochar application for pesticide remediation: Current knowledge and future research directions. Varjani S; Kumar G; Rene ER J Environ Manage; 2019 Feb; 232():505-513. PubMed ID: 30502618 [TBL] [Abstract][Full Text] [Related]
26. Promises and potential of Khan AG Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143 [TBL] [Abstract][Full Text] [Related]
27. Heavy metal induced stress on wheat: phytotoxicity and microbiological management. Rizvi A; Zaidi A; Ameen F; Ahmed B; AlKahtani MDF; Khan MS RSC Adv; 2020 Oct; 10(63):38379-38403. PubMed ID: 35693041 [TBL] [Abstract][Full Text] [Related]
28. Pesticide fate modeling in soils with the crop model STICS: Feasibility for assessment of agricultural practices. Queyrel W; Habets F; Blanchoud H; Ripoche D; Launay M Sci Total Environ; 2016 Jan; 542(Pt A):787-802. PubMed ID: 26556743 [TBL] [Abstract][Full Text] [Related]
29. Wood ash application for crop production, amelioration of soil acidity and contaminated environments. Baloch SB; Ali S; Bernas J; Moudrý J; Konvalina P; Mushtaq Z; Murindangabo YT; Onyebuchi EF; Baloch FB; Ahmad M; Saeed Q; Mustafa A Chemosphere; 2024 Jun; 357():141865. PubMed ID: 38570047 [TBL] [Abstract][Full Text] [Related]
30. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Khatoon Z; Huang S; Rafique M; Fakhar A; Kamran MA; Santoyo G J Environ Manage; 2020 Nov; 273():111118. PubMed ID: 32741760 [TBL] [Abstract][Full Text] [Related]
31. Pesticide contamination in agro-ecosystems: toxicity, impacts, and bio-based management strategies. Dhuldhaj UP; Singh R; Singh VK Environ Sci Pollut Res Int; 2023 Jan; 30(4):9243-9270. PubMed ID: 36456675 [TBL] [Abstract][Full Text] [Related]
32. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Phour M; Sindhu SS Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564 [TBL] [Abstract][Full Text] [Related]
33. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. Bhanse P; Kumar M; Singh L; Awasthi MK; Qureshi A Chemosphere; 2022 Sep; 303(Pt 1):134954. PubMed ID: 35595111 [TBL] [Abstract][Full Text] [Related]
34. [Research Progress on the Remediation Technology of Herbicide Contamination in Agricultural Soils]. Hu FY; An J; Wang BY; Xu MK; Zhang HW; Wei SH Huan Jing Ke Xue; 2023 Apr; 44(4):2384-2394. PubMed ID: 37040987 [TBL] [Abstract][Full Text] [Related]
35. Combination of slurry-bioreactors and actinobacteria consortia as strategy to bioremediate chlordane-contaminated soils. Fuentes MS; Álvarez A; Cuozzo SA; Benimeli CS Chemosphere; 2023 Oct; 337():139270. PubMed ID: 37343638 [TBL] [Abstract][Full Text] [Related]
36. A review of pesticides sorption in biochar from maize, rice, and wheat residues: Current status and challenges for soil application. Ogura AP; Lima JZ; Marques JP; Massaro Sousa L; Rodrigues VGS; Espíndola ELG J Environ Manage; 2021 Dec; 300():113753. PubMed ID: 34537561 [TBL] [Abstract][Full Text] [Related]
37. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions. Alves ARA; Yin Q; Oliveira RS; Silva EF; Novo LAB Sci Total Environ; 2022 Sep; 838(Pt 4):156435. PubMed ID: 35660615 [TBL] [Abstract][Full Text] [Related]
38. Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. Zhu Y; Wang Y; He X; Li B; Du S Chemosphere; 2023 Oct; 338():139475. PubMed ID: 37442391 [TBL] [Abstract][Full Text] [Related]
39. Sensitivity analysis of the STICS-MACRO model to identify cropping practices reducing pesticides losses. Lammoglia SK; Makowski D; Moeys J; Justes E; Barriuso E; Mamy L Sci Total Environ; 2017 Feb; 580():117-129. PubMed ID: 27986318 [TBL] [Abstract][Full Text] [Related]
40. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. Gangola S; Bhatt P; Kumar AJ; Bhandari G; Joshi S; Punetha A; Bhatt K; Rene ER Chemosphere; 2022 Jun; 296():133916. PubMed ID: 35149016 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]