BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37500416)

  • 1. Shortening Acquisition Time and Improving Image Quality for Pelvic MRI Using Deep Learning Reconstruction for Diffusion-Weighted Imaging at 1.5 T.
    Herrmann J; Benkert T; Brendlin A; Gassenmaier S; Hölldobler T; Maennlin S; Almansour H; Lingg A; Weiland E; Afat S
    Acad Radiol; 2024 Mar; 31(3):921-928. PubMed ID: 37500416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acquisition time reduction of diffusion-weighted liver imaging using deep learning image reconstruction.
    Afat S; Herrmann J; Almansour H; Benkert T; Weiland E; Hölldobler T; Nikolaou K; Gassenmaier S
    Diagn Interv Imaging; 2023 Apr; 104(4):178-184. PubMed ID: 36787419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI.
    Wessling D; Gassenmaier S; Olthof SC; Benkert T; Weiland E; Afat S; Preibsch H
    Eur J Radiol; 2023 Sep; 166():110948. PubMed ID: 37481831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated Diffusion-Weighted Imaging in 3 T Breast MRI Using a Deep Learning Reconstruction Algorithm With Superresolution Processing: A Prospective Comparative Study.
    Wilpert C; Neubauer C; Rau A; Schneider H; Benkert T; Weiland E; Strecker R; Reisert M; Benndorf M; Weiss J; Bamberg F; Windfuhr-Blum M; Neubauer J
    Invest Radiol; 2023 Dec; 58(12):842-852. PubMed ID: 37428618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bladder MRI with deep learning-based reconstruction: a prospective evaluation of muscle invasiveness using VI-RADS.
    Zhang X; Wang Y; Xu X; Zhang J; Sun Y; Hu M; Wang S; Li Y; Chen Y; Zhao X
    Abdom Radiol (NY); 2024 May; 49(5):1615-1625. PubMed ID: 38652125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity.
    Almansour H; Herrmann J; Gassenmaier S; Lingg A; Nickel MD; Kannengiesser S; Arberet S; Othman AE; Afat S
    Acad Radiol; 2023 May; 30(5):863-872. PubMed ID: 35810067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical feasibility of accelerated diffusion weighted imaging of the abdomen with deep learning reconstruction: Comparison with conventional diffusion weighted imaging.
    Bae SH; Hwang J; Hong SS; Lee EJ; Jeong J; Benkert T; Sung J; Arberet S
    Eur J Radiol; 2022 Sep; 154():110428. PubMed ID: 35797791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning-Accelerated Liver Diffusion-Weighted Imaging: Intraindividual Comparison and Additional Phantom Study of Free-Breathing and Respiratory-Triggering Acquisitions.
    Kim DH; Kim B; Lee HS; Benkert T; Kim H; Choi JI; Oh SN; Rha SE
    Invest Radiol; 2023 Nov; 58(11):782-790. PubMed ID: 37212468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical feasibility of deep learning reconstruction in liver diffusion-weighted imaging: Improvement of image quality and impact on apparent diffusion coefficient value.
    Chen Q; Fang S; Yuchen Y; Li R; Deng R; Chen Y; Ma D; Lin H; Yan F
    Eur J Radiol; 2023 Nov; 168():111149. PubMed ID: 37862927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Qualitative and quantitative comparison of image quality between single-shot echo-planar and interleaved multi-shot echo-planar diffusion-weighted imaging in female pelvis.
    An H; Ma X; Pan Z; Guo H; Lee EYP
    Eur Radiol; 2020 Apr; 30(4):1876-1884. PubMed ID: 31822971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Liver Diffusion-Weighted Imaging at 3 T Using Respiratory Triggering in Combination With Simultaneous Multislice Acceleration.
    Tavakoli A; Attenberger UI; Budjan J; Stemmer A; Nickel D; Kannengiesser S; Morelli JN; Schoenberg SO; Riffel P
    Invest Radiol; 2019 Dec; 54(12):744-751. PubMed ID: 31335634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated diffusion-weighted imaging of the prostate using deep learning image reconstruction: A retrospective comparison with standard diffusion-weighted imaging.
    Ursprung S; Herrmann J; Joos N; Weiland E; Benkert T; Almansour H; Lingg A; Afat S; Gassenmaier S
    Eur J Radiol; 2023 Aug; 165():110953. PubMed ID: 37399667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Multislice Diffusion-Weighted Imaging of the Kidneys at 3 T.
    Tavakoli A; Krammer J; Attenberger UI; Budjan J; Stemmer A; Nickel D; Kannengiesser S; Morelli JN; Schoenberg SO; Riffel P
    Invest Radiol; 2020 Apr; 55(4):233-238. PubMed ID: 31917764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DWI of the prostate: Comparison of a faster diagonal acquisition to standard three-scan trace acquisition.
    Corcuera-Solano I; Wagner M; Hectors S; Lewis S; Titelbaum N; Stemmer A; Rastinehad A; Tewari A; Taouli B
    J Magn Reson Imaging; 2017 Dec; 46(6):1767-1775. PubMed ID: 28301097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Reconstruction Enables Highly Accelerated Biparametric MR Imaging of the Prostate.
    Johnson PM; Tong A; Donthireddy A; Melamud K; Petrocelli R; Smereka P; Qian K; Keerthivasan MB; Chandarana H; Knoll F
    J Magn Reson Imaging; 2022 Jul; 56(1):184-195. PubMed ID: 34877735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging.
    Ueda T; Ohno Y; Yamamoto K; Murayama K; Ikedo M; Yui M; Hanamatsu S; Tanaka Y; Obama Y; Ikeda H; Toyama H
    Radiology; 2022 May; 303(2):373-381. PubMed ID: 35103536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Readout-segmented echo-planar imaging for diffusion-weighted imaging in the pelvis at 3T-A feasibility study.
    Thian YL; Xie W; Porter DA; Weileng Ang B
    Acad Radiol; 2014 Apr; 21(4):531-7. PubMed ID: 24594423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating Diffusion-Weighted Magnetic Resonance Imaging for Screening in Oncologic Tertiary Prevention: A Prospective Ex Vivo and In Vivo Study.
    Dreher C; Kuder TA; König F; Paech D; Tavakoli A; Laun FB; Flothow F; Gnirs R; Benkert T; Nickel D; Strecker R; Schlemmer HP; Bickelhaupt S
    Invest Radiol; 2019 Nov; 54(11):704-711. PubMed ID: 31356384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous Multislice Diffusion-Weighted Imaging of the Kidney: A Systematic Analysis of Image Quality.
    Kenkel D; Barth BK; Piccirelli M; Filli L; Finkenstädt T; Reiner CS; Boss A
    Invest Radiol; 2017 Mar; 52(3):163-169. PubMed ID: 27662577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-accelerated T2-weighted imaging versus conventional T2-weighted imaging in the female pelvic cavity: image quality and diagnostic performance.
    Kim H; Choi MH; Lee YJ; Han D; Mostapha M; Nickel D
    Acta Radiol; 2024 May; 65(5):499-505. PubMed ID: 38343091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.