These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37500494)

  • 21. The central circadian clock of the suprachiasmatic nucleus as an ensemble of multiple oscillatory neurons.
    Mieda M
    Neurosci Res; 2020 Jul; 156():24-31. PubMed ID: 31560907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Neurobiology of Circadian Rhythms.
    Sollars PJ; Pickard GE
    Psychiatr Clin North Am; 2015 Dec; 38(4):645-65. PubMed ID: 26600101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice.
    Landgraf D; Long JE; Proulx CD; Barandas R; Malinow R; Welsh DK
    Biol Psychiatry; 2016 Dec; 80(11):827-835. PubMed ID: 27113500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phototransduction by retinal ganglion cells that set the circadian clock.
    Berson DM; Dunn FA; Takao M
    Science; 2002 Feb; 295(5557):1070-3. PubMed ID: 11834835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A colourful clock.
    van Diepen HC; Foster RG; Meijer JH
    PLoS Biol; 2015 May; 13(5):e1002160. PubMed ID: 25996907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cell adhesion molecule EphA4 is involved in circadian clock functions.
    Kiessling S; O'Callaghan EK; Freyburger M; Cermakian N; Mongrain V
    Genes Brain Behav; 2018 Jan; 17(1):82-92. PubMed ID: 28425198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of network architecture on synchronization and entrainment properties of the circadian oscillations in the suprachiasmatic nucleus.
    Hafner M; Koeppl H; Gonze D
    PLoS Comput Biol; 2012; 8(3):e1002419. PubMed ID: 22423219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light entrainment of the SCN circadian clock and implications for personalized alterations of corticosterone rhythms in shift work and jet lag.
    Li Y; Androulakis IP
    Sci Rep; 2021 Sep; 11(1):17929. PubMed ID: 34504149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciphering clock cell network morphology within the biological master clock, suprachiasmatic nucleus: From the perspective of circadian wave dynamics.
    Kim H; Min C; Jeong B; Lee KJ
    PLoS Comput Biol; 2022 Jun; 18(6):e1010213. PubMed ID: 35666776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NF-κB signalling is involved in immune-modulation, but not basal functioning, of the mouse suprachiasmatic circadian clock.
    O'Keeffe SM; Beynon AL; Davies JS; Moynagh PN; Coogan AN
    Eur J Neurosci; 2017 Apr; 45(8):1111-1123. PubMed ID: 28245070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock.
    Husse J; Leliavski A; Tsang AH; Oster H; Eichele G
    FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of the mammalian circadian clock.
    Honma S
    Eur J Neurosci; 2020 Jan; 51(1):182-193. PubMed ID: 30589961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light Input to the Mammalian Circadian Clock.
    Dannerfjord AA; Brown LA; Foster RG; Peirson SN
    Methods Mol Biol; 2021; 2130():233-247. PubMed ID: 33284449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous expression of gamma-aminobutyric acid and gamma-aminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus.
    Belenky MA; Yarom Y; Pickard GE
    J Comp Neurol; 2008 Feb; 506(4):708-32. PubMed ID: 18067149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Processing of daily and seasonal light information in the mammalian circadian clock.
    Meijer JH; Michel S; Vansteensel MJ
    Gen Comp Endocrinol; 2007; 152(2-3):159-64. PubMed ID: 17324426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suprachiasmatic nucleus-dependent and independent outputs driving rhythmic activity in hypothalamic and thalamic neurons.
    Harding C; Bechtold DA; Brown TM
    BMC Biol; 2020 Sep; 18(1):134. PubMed ID: 32998726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression profiles of PER2 immunoreactivity within the shell and core regions of the rat suprachiasmatic nucleus: lack of effect of photic entrainment and disruption by constant light.
    Beaulé C; Houle LM; Amir S
    J Mol Neurosci; 2003; 21(2):133-47. PubMed ID: 14593213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
    Noguchi T; Leise TL; Kingsbury NJ; Diemer T; Wang LL; Henson MA; Welsh DK
    eNeuro; 2017; 4(4):. PubMed ID: 28828400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input.
    Hanna L; Walmsley L; Pienaar A; Howarth M; Brown TM
    J Physiol; 2017 Jun; 595(11):3621-3649. PubMed ID: 28217893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aberrant gating of photic input to the suprachiasmatic circadian pacemaker of mice lacking the VPAC2 receptor.
    Hughes AT; Fahey B; Cutler DJ; Coogan AN; Piggins HD
    J Neurosci; 2004 Apr; 24(14):3522-6. PubMed ID: 15071099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.