These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 37500669)

  • 21. The effect of plant weight on estimations of stalk lodging resistance.
    Stubbs CJ; Oduntan YA; Keep TR; Noble SD; Robertson DJ
    Plant Methods; 2020; 16():128. PubMed ID: 32973914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated Puncture Score: force-displacement weighted rind penetration tests improve stalk lodging resistance estimations in maize.
    Stubbs CJ; McMahan C; Seegmiller W; Cook DD; Robertson DJ
    Plant Methods; 2020; 16():113. PubMed ID: 32821268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diverse maize hybrids are structurally inefficient at resisting wind induced bending forces that cause stalk lodging.
    Stubbs CJ; Seegmiller K; McMahan C; Sekhon RS; Robertson DJ
    Plant Methods; 2020; 16():67. PubMed ID: 32426024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of probe geometry on rind puncture resistance testing of maize stalks.
    Cook DD; Meehan K; Asatiani L; Robertson DJ
    Plant Methods; 2020; 16():65. PubMed ID: 32411274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel rind puncture technique to measure rind thickness and diameter in plant stalks.
    Seegmiller WH; Graves J; Robertson DJ
    Plant Methods; 2020; 16():44. PubMed ID: 32266000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DARLING: a device for assessing resistance to lodging in grain crops.
    Cook DD; de la Chapelle W; Lin TC; Lee SY; Sun W; Robertson DJ
    Plant Methods; 2019; 15():102. PubMed ID: 31497063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving Lodging Resistance: Using Wheat and Rice as Classical Examples.
    Shah L; Yahya M; Shah SMA; Nadeem M; Ali A; Ali A; Wang J; Riaz MW; Rehman S; Wu W; Khan RM; Abbas A; Riaz A; Anis GB; Si H; Jiang H; Ma C
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31466256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring the transverse Young's modulus of maize rind and pith tissues.
    Stubbs CJ; Sun W; Cook DD
    J Biomech; 2019 Feb; 84():113-120. PubMed ID: 30635117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Non-Destructive and Direction-Insensitive Method Using a Strain Sensor and Two Single Axis Angle Sensors for Evaluating Corn Stalk Lodging Resistance.
    Guo Q; Chen R; Sun X; Jiang M; Sun H; Wang S; Ma L; Yang Y; Hu J
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29882796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The elastic modulus for maize stems.
    Al-Zube L; Sun W; Robertson D; Cook D
    Plant Methods; 2018; 14():11. PubMed ID: 29449871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring the compressive modulus of elasticity of pith-filled plant stems.
    Al-Zube LA; Robertson DJ; Edwards JN; Sun W; Cook DD
    Plant Methods; 2017; 13():99. PubMed ID: 29151845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An integrated hyperspectral imaging and genome-wide association analysis platform provides spectral and genetic insights into the natural variation in rice.
    Feng H; Guo Z; Yang W; Huang C; Chen G; Fang W; Xiong X; Zhang H; Wang G; Xiong L; Liu Q
    Sci Rep; 2017 Jun; 7(1):4401. PubMed ID: 28667309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preventing lodging in bioenergy crops: a biomechanical analysis of maize stalks suggests a new approach.
    Von Forell G; Robertson D; Lee SY; Cook DD
    J Exp Bot; 2015 Jul; 66(14):4367-71. PubMed ID: 25873674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On measuring the bending strength of septate grass stems.
    Robertson DJ; Smith SL; Cook DD
    Am J Bot; 2015 Jan; 102(1):5-11. PubMed ID: 25587143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A method for the assessment of the risk of wheat lodging.
    Baker CJ; Berry PM; Spink JH; Sylvester-Bradley R; Griffin JM; Scott RK; Clare RW
    J Theor Biol; 1998 Oct; 194(4):587-603. PubMed ID: 9790832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental error analysis of biomechanical phenotyping for stalk lodging resistance in maize.
    DeKold J; Robertson D
    Sci Rep; 2023 Jul; 13(1):12178. PubMed ID: 37500669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field-based mechanical phenotyping of cereal crops to assess lodging resistance.
    Erndwein L; Cook DD; Robertson DJ; Sparks EE
    Appl Plant Sci; 2020 Aug; 8(8):e11382. PubMed ID: 32995102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research Progress on Mechanical Strength of Rice Stalks.
    Yang H; Huang J; Ye Y; Xu Y; Xiao Y; Chen Z; Li X; Ma Y; Lu T; Rao Y
    Plants (Basel); 2024 Jun; 13(13):. PubMed ID: 38999566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maize plants and the brace roots that support them.
    Sparks EE
    New Phytol; 2023 Jan; 237(1):48-52. PubMed ID: 36102037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploiting SPL genes to improve maize plant architecture tailored for high-density planting.
    Wei H; Zhao Y; Xie Y; Wang H
    J Exp Bot; 2018 Sep; 69(20):4675-4688. PubMed ID: 29992284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.