These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37500697)

  • 21. The impacts of biomineralization and oil contamination on the compressive strength of waste plastic-filled mortar.
    Rux K; Kane S; Espinal M; Ryan C; Phillips A; Heveran C
    Sci Rep; 2022 Dec; 12(1):21547. PubMed ID: 36513740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms.
    Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Alabdullah AA
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predictive Modeling of Compression Strength of Waste PET/SCM Blended Cementitious Grout Using Gene Expression Programming.
    Khan K; Jalal FE; Iqbal M; Khan MI; Amin MN; Al-Faiad MA
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models.
    Khan K; Salami BA; Iqbal M; Amin MN; Ahmed F; Jalal FE
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of waste plastic in concrete mixture as aggregate replacement.
    Ismail ZZ; Al-Hashmi EA
    Waste Manag; 2008 Nov; 28(11):2041-7. PubMed ID: 17931848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study of fine aggregate replacement with fly ash an environmental friendly and economical solution.
    Pofale AD; Deo SV
    J Environ Sci Eng; 2010 Oct; 52(4):373-8. PubMed ID: 22312809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary patterns and microscopic mechanisms of strength in mine tailings backfilled with waste glass.
    Deng D; Gao Y; Chen Z; Wang Y
    Sci Rep; 2024 Jan; 14(1):435. PubMed ID: 38172537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Steel slag: a waste industrial by-product as an alternative sustainable green building material in construction applications--an attempt for solid waste management.
    Pofale AD; Nadeem M
    J Environ Sci Eng; 2012 Jan; 54(1):140-6. PubMed ID: 23741870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feasibility study of the use of concrete blocks produced from plastic marine garbage for use in civil construction.
    Soares HLC; Choueri PKG; Santos AR
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28418-28427. PubMed ID: 38546919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF.
    Nafees A; Khan S; Javed MF; Alrowais R; Mohamed AM; Mohamed A; Vatin NI
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction model for the compressive strength of green concrete using cement kiln dust and fly ash.
    Bakhoum ES; Amir A; Osama F; Adel M
    Sci Rep; 2023 Feb; 13(1):1864. PubMed ID: 36726037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compressive strength prediction of high-strength oil palm shell lightweight aggregate concrete using machine learning methods.
    Ghanbari S; Shahmansouri AA; Akbarzadeh Bengar H; Jafari A
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):1096-1115. PubMed ID: 35909210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mining waste and coconut fibers as an eco-friendly reinforcement for the production of concrete blocks.
    Terra ICC; Batista FG; Silva DW; Scatolino MV; Alves JĂșnior FT; Martins MA; Mendes LM
    Environ Sci Pollut Res Int; 2023 May; 30(22):62641-62652. PubMed ID: 36947382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical modelling, multi-objective optimization, and compliance reliability of paper-derived eco-composites.
    Adewale Akinwande A; Folorunso DO; Balogun OA; Romanovski V
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):70135-70157. PubMed ID: 35585453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alkali-Activated Mortars with Recycled Fines and Hemp as a Sand.
    Pawluczuk E; Kalinowska-Wichrowska K; Soomro M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical and toxicological evaluation of concrete artifacts containing waste foundry sand.
    Mastella MA; Gislon ES; Pelisser F; Ricken C; da Silva L; Angioletto E; Montedo OR
    Waste Manag; 2014 Aug; 34(8):1495-500. PubMed ID: 24582355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reuse of thermosetting plastic waste for lightweight concrete.
    Panyakapo P; Panyakapo M
    Waste Manag; 2008; 28(9):1581-8. PubMed ID: 17910913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Valorization of post-consumer waste plastic in cementitious concrete composites.
    Marzouk OY; Dheilly RM; Queneudec M
    Waste Manag; 2007; 27(2):310-8. PubMed ID: 16730969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective Utilization of Waste Glass as Cementitious Powder and Construction Sand in Mortar.
    Wang Y; Cao Y; Zhang P; Ma AY
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.