These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 37500801)

  • 61. Prokaryote autoimmunity in the context of self-targeting by CRISPR-Cas systems.
    Lenskaia T; Boley D
    J Bioinform Comput Biol; 2020 Oct; 18(5):2050033. PubMed ID: 33078994
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis.
    Jarett JK; Nayfach S; Podar M; Inskeep W; Ivanova NN; Munson-McGee J; Schulz F; Young M; Jay ZJ; Beam JP; Kyrpides NC; Malmstrom RR; Stepanauskas R; Woyke T
    Microbiome; 2018 Sep; 6(1):161. PubMed ID: 30223889
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pseudo-chaotic oscillations in CRISPR-virus coevolution predicted by bifurcation analysis.
    Berezovskaya FS; Wolf YI; Koonin EV; Karev GP
    Biol Direct; 2014 Jul; 9():13. PubMed ID: 24986220
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comprehensive discovery of CRISPR-targeted terminally redundant sequences in the human gut metagenome: Viruses, plasmids, and more.
    Sugimoto R; Nishimura L; Nguyen PT; Ito J; Parrish NF; Mori H; Kurokawa K; Nakaoka H; Inoue I
    PLoS Comput Biol; 2021 Oct; 17(10):e1009428. PubMed ID: 34673779
    [TBL] [Abstract][Full Text] [Related]  

  • 65. CRISPR-Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity.
    Faure G; Makarova KS; Koonin EV
    J Mol Biol; 2019 Jan; 431(1):3-20. PubMed ID: 30193985
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Unexpected host dependency of Antarctic Nanohaloarchaeota.
    Hamm JN; Erdmann S; Eloe-Fadrosh EA; Angeloni A; Zhong L; Brownlee C; Williams TJ; Barton K; Carswell S; Smith MA; Brazendale S; Hancock AM; Allen MA; Raftery MJ; Cavicchioli R
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14661-14670. PubMed ID: 31253704
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility.
    Grzymski JJ; Murray AE; Campbell BJ; Kaplarevic M; Gao GR; Lee C; Daniel R; Ghadiri A; Feldman RA; Cary SC
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17516-21. PubMed ID: 18987310
    [TBL] [Abstract][Full Text] [Related]  

  • 68. "Deciphering Archaeal Communities" Omics Tools in the Study of Archaeal Communities.
    Pašić L; Martin-Cuadrado AB; López-García P
    Methods Mol Biol; 2016; 1399():1-28. PubMed ID: 26791494
    [TBL] [Abstract][Full Text] [Related]  

  • 69. CRISPR-Cas systems: beyond adaptive immunity.
    Westra ER; Buckling A; Fineran PC
    Nat Rev Microbiol; 2014 May; 12(5):317-26. PubMed ID: 24704746
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.
    Vercoe RB; Chang JT; Dy RL; Taylor C; Gristwood T; Clulow JS; Richter C; Przybilski R; Pitman AR; Fineran PC
    PLoS Genet; 2013 Apr; 9(4):e1003454. PubMed ID: 23637624
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CRISPR/Cas systems in archaea: What array spacers can teach us about parasitism and gene exchange in the 3rd domain of life.
    Gophna U; Brodt A
    Mob Genet Elements; 2012 Jan; 2(1):63-64. PubMed ID: 22754756
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on virus-host coevolution.
    Koonin EV; Wolf YI
    Mol Biosyst; 2015 Jan; 11(1):20-7. PubMed ID: 25238531
    [TBL] [Abstract][Full Text] [Related]  

  • 73. CRISPR-Cas System in Antibiotic Resistance Plasmids in
    Kamruzzaman M; Iredell JR
    Front Microbiol; 2019; 10():2934. PubMed ID: 31998256
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Novel Transcriptional Regulator Related to Thiamine Phosphate Synthase Controls Thiamine Metabolism Genes in Archaea.
    Rodionov DA; Leyn SA; Li X; Rodionova IA
    J Bacteriol; 2017 Feb; 199(4):. PubMed ID: 27920295
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Anti-CRISPR Proteins in Archaea.
    Peng X; Mayo-Muñoz D; Bhoobalan-Chitty Y; Martínez-Álvarez L
    Trends Microbiol; 2020 Nov; 28(11):913-921. PubMed ID: 32499102
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems.
    Davidson AR; Lu WT; Stanley SY; Wang J; Mejdani M; Trost CN; Hicks BT; Lee J; Sontheimer EJ
    Annu Rev Biochem; 2020 Jun; 89():309-332. PubMed ID: 32186918
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification of a Type IV-A CRISPR-Cas System Located Exclusively on
    Newire E; Aydin A; Juma S; Enne VI; Roberts AP
    Front Microbiol; 2020; 11():1937. PubMed ID: 32903441
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Micrarchaeon Isolate Is Covered by a Proteinaceous S-Layer.
    Gfrerer S; Winkler D; Novion Ducassou J; Couté Y; Rachel R; Gescher J
    Appl Environ Microbiol; 2022 Mar; 88(5):e0155321. PubMed ID: 35020453
    [TBL] [Abstract][Full Text] [Related]  

  • 79. CRISPR/Cas, the immune system of bacteria and archaea.
    Horvath P; Barrangou R
    Science; 2010 Jan; 327(5962):167-70. PubMed ID: 20056882
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery.
    Krupovic M; Béguin P; Koonin EV
    Curr Opin Microbiol; 2017 Aug; 38():36-43. PubMed ID: 28472712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.