BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 37500887)

  • 1. Exposure of iPSC-derived human microglia to brain substrates enables the generation and manipulation of diverse transcriptional states in vitro.
    Dolan MJ; Therrien M; Jereb S; Kamath T; Gazestani V; Atkeson T; Marsh SE; Goeva A; Lojek NM; Murphy S; White CM; Joung J; Liu B; Limone F; Eggan K; Hacohen N; Bernstein BE; Glass CK; Leinonen V; Blurton-Jones M; Zhang F; Epstein CB; Macosko EZ; Stevens B
    Nat Immunol; 2023 Aug; 24(8):1382-1390. PubMed ID: 37500887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic amyloid beta does not induce a robust transcriptional response in innate immune cell culture systems.
    Quiroga IY; Cruikshank AE; Bond ML; Reed KSM; Evangelista BA; Tseng JH; Ragusa JV; Meeker RB; Won H; Cohen S; Cohen TJ; Phanstiel DH
    J Neuroinflammation; 2022 Apr; 19(1):99. PubMed ID: 35459147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge.
    Nugent AA; Lin K; van Lengerich B; Lianoglou S; Przybyla L; Davis SS; Llapashtica C; Wang J; Kim DJ; Xia D; Lucas A; Baskaran S; Haddick PCG; Lenser M; Earr TK; Shi J; Dugas JC; Andreone BJ; Logan T; Solanoy HO; Chen H; Srivastava A; Poda SB; Sanchez PE; Watts RJ; Sandmann T; Astarita G; Lewcock JW; Monroe KM; Di Paolo G
    Neuron; 2020 Mar; 105(5):837-854.e9. PubMed ID: 31902528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the Characteristics of Microglia Preparations Generated Using Different Human iPSC-Based Differentiation Methods to Model Neurodegenerative Diseases.
    Tang YM; Pulimood NS; Stifani S
    ASN Neuro; 2022; 14():17590914221145105. PubMed ID: 36524236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated toolkit for human microglia functional genomics.
    Haq I; Ngo JC; Roy N; Pan RL; Nawsheen N; Chiu R; Zhang Y; Fujita M; Soni RK; Wu X; Bennett DA; Menon V; Olah M; Sher F
    Stem Cell Res Ther; 2024 Apr; 15(1):104. PubMed ID: 38600587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Chimeric Model to Study and Manipulate Human Microglia In Vivo.
    Hasselmann J; Coburn MA; England W; Figueroa Velez DX; Kiani Shabestari S; Tu CH; McQuade A; Kolahdouzan M; Echeverria K; Claes C; Nakayama T; Azevedo R; Coufal NG; Han CZ; Cummings BJ; Davtyan H; Glass CK; Healy LM; Gandhi SP; Spitale RC; Blurton-Jones M
    Neuron; 2019 Sep; 103(6):1016-1033.e10. PubMed ID: 31375314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alzheimer's Risk Gene TREM2 Determines Functional Properties of New Type of Human iPSC-Derived Microglia.
    Reich M; Paris I; Ebeling M; Dahm N; Schweitzer C; Reinhardt D; Schmucki R; Prasad M; Köchl F; Leist M; Cowley SA; Zhang JD; Patsch C; Gutbier S; Britschgi M
    Front Immunol; 2020; 11():617860. PubMed ID: 33613545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional characterization of iPSC-derived microglia as a model for therapeutic development in neurodegeneration.
    Ramaswami G; Yuva-Aydemir Y; Akerberg B; Matthews B; Williams J; Golczer G; Huang J; Al Abdullatif A; Huh D; Burkly LC; Engle SJ; Grossman I; Sehgal A; Sigova AA; Fremeau RT; Liu Y; Bumcrot D
    Sci Rep; 2024 Jan; 14(1):2153. PubMed ID: 38272949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases.
    Krasemann S; Madore C; Cialic R; Baufeld C; Calcagno N; El Fatimy R; Beckers L; O'Loughlin E; Xu Y; Fanek Z; Greco DJ; Smith ST; Tweet G; Humulock Z; Zrzavy T; Conde-Sanroman P; Gacias M; Weng Z; Chen H; Tjon E; Mazaheri F; Hartmann K; Madi A; Ulrich JD; Glatzel M; Worthmann A; Heeren J; Budnik B; Lemere C; Ikezu T; Heppner FL; Litvak V; Holtzman DM; Lassmann H; Weiner HL; Ochando J; Haass C; Butovsky O
    Immunity; 2017 Sep; 47(3):566-581.e9. PubMed ID: 28930663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a simplified method to generate human microglia from pluripotent stem cells.
    McQuade A; Coburn M; Tu CH; Hasselmann J; Davtyan H; Blurton-Jones M
    Mol Neurodegener; 2018 Dec; 13(1):67. PubMed ID: 30577865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases.
    Abud EM; Ramirez RN; Martinez ES; Healy LM; Nguyen CHH; Newman SA; Yeromin AV; Scarfone VM; Marsh SE; Fimbres C; Caraway CA; Fote GM; Madany AM; Agrawal A; Kayed R; Gylys KH; Cahalan MD; Cummings BJ; Antel JP; Mortazavi A; Carson MJ; Poon WW; Blurton-Jones M
    Neuron; 2017 Apr; 94(2):278-293.e9. PubMed ID: 28426964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concise Review: Modeling Neurodegenerative Diseases with Human Pluripotent Stem Cell-Derived Microglia.
    Haenseler W; Rajendran L
    Stem Cells; 2019 Jun; 37(6):724-730. PubMed ID: 30801863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microglial activity state biomarker panel differentiates FTD-granulin and Alzheimer's disease patients from controls.
    Pesämaa I; Müller SA; Robinson S; Darcher A; Paquet D; Zetterberg H; Lichtenthaler SF; Haass C
    Mol Neurodegener; 2023 Sep; 18(1):70. PubMed ID: 37775827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Disease modeling using human induced pluripotent stem cell-derived microglia and region-specific neurons].
    Nishimura K; Takata K
    Nihon Yakurigaku Zasshi; 2023; 158(1):52-56. PubMed ID: 36596492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redefining microglia states: Lessons and limits of human and mouse models to study microglia states in neurodegenerative diseases.
    Yvanka de Soysa T; Therrien M; Walker AC; Stevens B
    Semin Immunol; 2022 Mar; 60():101651. PubMed ID: 36155944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microglia alterations in neurodegenerative diseases and their modeling with human induced pluripotent stem cell and other platforms.
    Sabogal-Guáqueta AM; Marmolejo-Garza A; de Pádua VP; Eggen B; Boddeke E; Dolga AM
    Prog Neurobiol; 2020 Jul; 190():101805. PubMed ID: 32335273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Alzheimer's disease with iPSC-derived brain cells.
    Penney J; Ralvenius WT; Tsai LH
    Mol Psychiatry; 2020 Jan; 25(1):148-167. PubMed ID: 31391546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particulate matter from car exhaust alters function of human iPSC-derived microglia.
    Jäntti H; Jonk S; Gómez Budia M; Ohtonen S; Fagerlund I; Fazaludeen MF; Aakko-Saksa P; Pebay A; Lehtonen Š; Koistinaho J; Kanninen KM; Jalava PI; Malm T; Korhonen P
    Part Fibre Toxicol; 2024 Feb; 21(1):6. PubMed ID: 38360668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IL-33-PU.1 Transcriptome Reprogramming Drives Functional State Transition and Clearance Activity of Microglia in Alzheimer's Disease.
    Lau SF; Chen C; Fu WY; Qu JY; Cheung TH; Fu AKY; Ip NY
    Cell Rep; 2020 Apr; 31(3):107530. PubMed ID: 32320664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer's disease.
    Sobue A; Komine O; Hara Y; Endo F; Mizoguchi H; Watanabe S; Murayama S; Saito T; Saido TC; Sahara N; Higuchi M; Ogi T; Yamanaka K
    Acta Neuropathol Commun; 2021 Jan; 9(1):1. PubMed ID: 33402227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.