BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37501029)

  • 1. Bioleaching of available silicon from coal tailings using Bacillus mucilaginosus: a sustainable solution for soil improvement.
    Zhang Q; Liang L; Jing M; Yan X; Peng Y
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):93142-93154. PubMed ID: 37501029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced effect of biochar on leaching vanadium and copper from stone coal tailings by Thiobacillus ferrooxidans.
    Dong Y; Chong S; Lin H
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20398-20408. PubMed ID: 34738215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans.
    Lee E; Han Y; Park J; Hong J; Silva RA; Kim S; Kim H
    J Environ Manage; 2015 Jan; 147():124-31. PubMed ID: 25262394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of silicon-activating bacteria and the activation mechanism of silicon in electrolytic manganese residue.
    Lv Y; Li J; Liu X; Chen B; Zhang M; Chen Z; Zhang TC
    Environ Res; 2021 Nov; 202():111659. PubMed ID: 34246642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioleaching Mercury from Coal with
    Mao W; Mei J; He H; Liu C; Tao X; Huang Z
    Microorganisms; 2023 Nov; 11(11):. PubMed ID: 38004714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching of silicon in electrolytic manganese residue using single and mixed silicate bacteria.
    Lv Y; Li J; Ye H; Du D; Gan C; Wuri L; Sun P; Wen J
    Bioprocess Biosyst Eng; 2019 Nov; 42(11):1819-1828. PubMed ID: 31435737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of ZSM-5 molecular sieve using coal gangue as a raw material via solvent-free method: Adsorption performance tests for heavy metal ions and methylene blue.
    Gao J; Lin Q; Yang T; Bao YC; Liu J
    Chemosphere; 2023 Nov; 341():139741. PubMed ID: 37567260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the role of extracellular polymeric substances in the antimony leaching of tailings by Acidithiobacillus ferrooxidans.
    Song X; Yang A; Hu X; Niu AP; Cao Y; Zhang Q
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):17695-17708. PubMed ID: 36203043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of tellurium from mine tailings by indigenous Acidithiobacillus ferrooxidans.
    Zhan Y; Shen X; Chen M; Yang K; Xie H
    Lett Appl Microbiol; 2022 Nov; 75(5):1076-1083. PubMed ID: 34586632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process.
    Ye M; Yan P; Sun S; Han D; Xiao X; Zheng L; Huang S; Chen Y; Zhuang S
    Chemosphere; 2017 Feb; 168():1115-1125. PubMed ID: 27884516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioleaching of silicon in electrolytic manganese residue (EMR) by Paenibacillus mucilaginosus: Impact of silicate mineral structures.
    Lv Y; Li J; Ye H; Du D; Sun P; Ma M; Zhang TC
    Chemosphere; 2020 Oct; 256():127043. PubMed ID: 32445999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel and economical approach for the synthesis of short rod-shaped mesoporous silica nanoparticles from coal fly ash waste by Bacillus circulans MTCC 6811.
    Yadav VK; Amari A; Mahdhi N; Elkhaleefa AM; Fulekar MH; Patel A
    World J Microbiol Biotechnol; 2023 Aug; 39(11):289. PubMed ID: 37640981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Associations of Gangue Minerals in Coal Flotation Tailing and Their Transportation Behaviors in the Flotation Process.
    Tian Q; Wang H; Pan Y
    ACS Omega; 2022 Aug; 7(31):27542-27549. PubMed ID: 35967042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speciation of major and trace elements leached from coal fly ash and the kinetics involved.
    Hailu SL; McCrindle RI; Seopela MP; Combrinck S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(12):1186-1196. PubMed ID: 31271099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of iron tailings to prepare high-surface area mesoporous silica materials.
    Lu C; Yang H; Wang J; Tan Q; Fu L
    Sci Total Environ; 2020 Sep; 736():139483. PubMed ID: 32473455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geochemistry and mineralogy of coal mine overburden (waste): A study towards their environmental implications.
    Islam N; Rabha S; Subramanyam KSV; Saikia BK
    Chemosphere; 2021 Jul; 274():129736. PubMed ID: 33540311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roasted modified lead-zinc tailings using alkali as activator and its mitigation of Cd contaminated: Characteristics and mechanisms.
    Jiang S; Chen T; Zhang J; Duan LX; Yan B
    Chemosphere; 2022 Jun; 297():134029. PubMed ID: 35231475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coal tailings as a soil conditioner: evaluation of tailing properties and effect on tomato plants.
    Yong MT; Babla M; Karan S; Katwal U; Jahandari S; Matta P; Chen ZH; Tao Z
    Plant Growth Regul; 2022; 98(3):439-450. PubMed ID: 35892116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel lanthanum-modified copper tailings adsorbent for phosphate removal from water.
    Jin H; Lin L; Meng X; Wang L; Huang Z; Liu M; Dong L; Hu Y; Crittenden JC
    Chemosphere; 2021 Oct; 281():130779. PubMed ID: 34015652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An effective utilization of the slag from acid leaching of coal-waste: preparation of water glass with a low-temperature co-melting reaction.
    Fang L; Duan X; Chen R; Cheng F
    J Air Waste Manag Assoc; 2014 Aug; 64(8):887-93. PubMed ID: 25185391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.