These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37501376)

  • 1. Changes in Navigation Controls and Field-of-View Modes Affect Cybersickness Severity and Spatiotemporal Gait Patterns After Exposure to Virtual Environments.
    Lin MB; Wu B; Cheng SW
    Hum Factors; 2024 Jul; 66(7):1942-1960. PubMed ID: 37501376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset.
    Martelli D; Xia B; Prado A; Agrawal SK
    Gait Posture; 2019 Jan; 67():251-256. PubMed ID: 30388606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of motor task and environmental constraints on gait patterns during treadmill walking in a fully immersive virtual environment.
    Bovim LP; Gjesdal BE; Mæland S; Aaslund MK; Bogen B
    Gait Posture; 2020 Mar; 77():243-249. PubMed ID: 32062404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immersive virtual reality for learning exoskeleton-like virtual walking: a feasibility study.
    Rodríguez-Fernández A; den Berg AV; Cucinella SL; Lobo-Prat J; Font-Llagunes JM; Marchal-Crespo L
    J Neuroeng Rehabil; 2024 Nov; 21(1):195. PubMed ID: 39487470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of full immersive virtual reality video game on balance and cybersickness of healthy adolescents.
    Oh H; Lee G
    Neurosci Lett; 2021 Aug; 760():136063. PubMed ID: 34174345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual Reality as a Therapy Tool for Walking Activities in Pediatric Neurorehabilitation: Usability and User Experience Evaluation.
    Ammann-Reiffer C; Kläy A; Keller U
    JMIR Serious Games; 2022 Jul; 10(3):e38509. PubMed ID: 35834316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Presence, Performance, and Behavior between Real, Remote, and Virtual Immersive Environments.
    Khenak N; Vezien J; Bourdot P
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3467-3478. PubMed ID: 32976103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Human Retrosplenial Cortex and Thalamus Code Head Direction in a Global Reference Frame.
    Shine JP; Valdés-Herrera JP; Hegarty M; Wolbers T
    J Neurosci; 2016 Jun; 36(24):6371-81. PubMed ID: 27307227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overground gait training using virtual reality aimed at gait symmetry.
    Shideler BL; Martelli D; Prado A; Agrawal SK
    Hum Mov Sci; 2021 Apr; 76():102770. PubMed ID: 33636570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immersive Virtual Reality during Robot-Assisted Gait Training: Validation of a New Device in Stroke Rehabilitation.
    Morizio C; Compagnat M; Boujut A; Labbani-Igbida O; Billot M; Perrochon A
    Medicina (Kaunas); 2022 Dec; 58(12):. PubMed ID: 36557007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychometric evaluation of Simulator Sickness Questionnaire and its variants as a measure of cybersickness in consumer virtual environments.
    Sevinc V; Berkman MI
    Appl Ergon; 2020 Jan; 82():102958. PubMed ID: 31563798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyses of Gait Parameters of Younger and Older Adults During (Non-)Isometric Virtual Walking.
    Janeh O; Bruder G; Steinicke F; Gulberti A; Poetter-Nerger M
    IEEE Trans Vis Comput Graph; 2018 Oct; 24(10):2663-2674. PubMed ID: 29990158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SmoothRide: A Versatile Solution to Combat Cybersickness in Elevation-Altering Environments.
    Ang S; Quarles J
    IEEE Trans Vis Comput Graph; 2024 Nov; 30(11):7152-7161. PubMed ID: 39255132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tolerance of immersive head-mounted virtual reality among older nursing home residents.
    Rmadi H; Maillot P; Artico R; Baudouin E; Hanneton S; Dietrich G; Duron E
    Front Public Health; 2023; 11():1163484. PubMed ID: 37538272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related differences in gait adaptations during overground walking with and without visual perturbations using a virtual reality headset.
    Osaba MY; Martelli D; Prado A; Agrawal SK; Lalwani AK
    Sci Rep; 2020 Sep; 10(1):15376. PubMed ID: 32958807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control.
    Schöberl F; Zwergal A; Brandt T
    Front Neural Circuits; 2020; 14():6. PubMed ID: 32210769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limb movements of another pedestrian affect crossing distance but not path planning during virtual over ground circumvention.
    Fiset F; Lamontagne A; McFadyen BJ
    Neurosci Lett; 2020 Sep; 736():135278. PubMed ID: 32721429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-modal modified feedback self-paced BCI to control the gait of an avatar.
    Alchalabi B; Faubert J; Labbé DR
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33711832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance in complex life situations: effects of age, cognition, and walking speed in virtual versus real life environments.
    Kafri M; Weiss PL; Zeilig G; Bondi M; Baum-Cohen I; Kizony R
    J Neuroeng Rehabil; 2021 Feb; 18(1):30. PubMed ID: 33557894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-task costs of texting while walking forward and backward are greater for older adults than younger adults.
    Belur P; Hsiao D; Myers PS; Earhart GM; Rawson KS
    Hum Mov Sci; 2020 Jun; 71():102619. PubMed ID: 32452436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.