BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37502164)

  • 1. Switching Singlet Exciton to Triplet for Efficient Pure Organic Room-Temperature Phosphorescence by Rational Molecular Design.
    Ma L; Liu Y; Tian H; Ma X
    JACS Au; 2023 Jul; 3(7):1835-1842. PubMed ID: 37502164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing Efficient and Ultralong Pure Organic Room-Temperature Phosphorescent Materials by Structural Isomerism.
    Xiong Y; Zhao Z; Zhao W; Ma H; Peng Q; He Z; Zhang X; Chen Y; He X; Lam JWY; Tang BZ
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):7997-8001. PubMed ID: 29736955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A "Flexible" Purely Organic Molecule Exhibiting Strong Spin-Orbital Coupling: Toward Nondoped Room-Temperature Phosphorescence OLEDs.
    Qiu W; Cai X; Chen Z; Wei X; Li M; Gu Q; Peng X; Xie W; Jiao Y; Gan Y; Liu W; Su SJ
    J Phys Chem Lett; 2022 Jun; 13(22):4971-4980. PubMed ID: 35639995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large Inverted Singlet-Triplet Energy Gaps Are Not Always Favorable for Triplet Harvesting: Vibronic Coupling Drives the (Reverse) Intersystem Crossing in Heptazine Derivatives.
    Dinkelbach F; Bracker M; Kleinschmidt M; Marian CM
    J Phys Chem A; 2021 Nov; 125(46):10044-10051. PubMed ID: 34756038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance-Activated Spin-Flipping for Efficient Organic Ultralong Room-Temperature Phosphorescence.
    Tao Y; Chen R; Li H; Yuan J; Wan Y; Jiang H; Chen C; Si Y; Zheng C; Yang B; Xing G; Huang W
    Adv Mater; 2018 Nov; 30(44):e1803856. PubMed ID: 30260515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Lived Organic Room-Temperature Phosphorescence from Amorphous Polymer Systems.
    Guo J; Yang C; Zhao Y
    Acc Chem Res; 2022 Apr; 55(8):1160-1170. PubMed ID: 35394748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Insight Into the Ultralong Room-Temperature Phosphorescence of Nonplanar Aromatic Hydrocarbon.
    Qin K; Gong W; Gao J; Hu D; Shi H; Yao W; An Z; Ma H
    Front Chem; 2021; 9():740018. PubMed ID: 34552914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic Phosphorescence Nanowire Lasers.
    Yu Z; Wu Y; Xiao L; Chen J; Liao Q; Yao J; Fu H
    J Am Chem Soc; 2017 May; 139(18):6376-6381. PubMed ID: 28414231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclization-Promoted Ultralong Low-Temperature Phosphorescence via Boosting Intersystem Crossing.
    Zhu H; Badía-Domínguez I; Shi B; Li Q; Wei P; Xing H; Ruiz Delgado MC; Huang F
    J Am Chem Soc; 2021 Feb; 143(4):2164-2169. PubMed ID: 33442975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplified Spontaneous Emission from Organic Phosphorescence Emitters.
    Zu G; Li S; He J; Zhang H; Fu H
    J Phys Chem Lett; 2022 Jun; 13(24):5461-5467. PubMed ID: 35686987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of heavy atoms replacement sites on the luminescent ways of D-A-D type diphenyl sulfone molecules: Thermally activated delayed fluorescence and phosphorescence.
    Shi YH; Wang F; Sun GY; Xie YZ
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120249. PubMed ID: 34391994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purely Organic Room-Temperature Phosphorescence Endowing Fast Intersystem Crossing from Through-Space Spin-Orbit Coupling.
    Yu J; Ma H; Huang W; Liang Z; Zhou K; Lv A; Li XG; He Z
    JACS Au; 2021 Oct; 1(10):1694-1699. PubMed ID: 34723272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical insights into the excited-state properties of room-temperature phosphorescence-emitting N-substituted naphthalimides.
    Samanta PK; Pati SK
    J Mol Model; 2018 Aug; 24(9):246. PubMed ID: 30128608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of Long-Lived Room-Temperature Phosphorescence in Organic Aggregates.
    Peng Q; Ma H; Shuai Z
    Acc Chem Res; 2021 Feb; 54(4):940-949. PubMed ID: 33347277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical exploration of the bromine substitution effect and hydrostatic pressure responsive mechanism for room temperature phosphorescence.
    Mu Q; Liu H; Song Y; Wang CK; Lin L; Xu Y; Fan J
    Phys Chem Chem Phys; 2023 Aug; 25(34):23207-23221. PubMed ID: 37605930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-dependent photophysical properties of singlet and triplet metal-to-ligand charge transfer states in copper(I) bis(diimine) compounds.
    Siddique ZA; Yamamoto Y; Ohno T; Nozaki K
    Inorg Chem; 2003 Oct; 42(20):6366-78. PubMed ID: 14514312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving pure room temperature phosphorescence (RTP) in phenoselenazine-based organic emitters through synergism among heavy atom effect, enhanced n → π* transitions and magnified electron coupling by the A-D-A molecular configuration.
    Zhong D; Liu S; Yue L; Feng Z; Wang H; Yang P; Su B; Yang X; Sun Y; Zhou G
    Chem Sci; 2024 Jun; 15(24):9112-9119. PubMed ID: 38903225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of Localized Electronic Structures Caused by π Degeneracy Due to Highly Symmetric Heavy Atom-Free Conjugated Molecular Crystals Leading to Efficient Persistent Room-Temperature Phosphorescence.
    Hirata S
    Adv Sci (Weinh); 2019 Jul; 6(14):1900410. PubMed ID: 31380211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intersystem-crossing and phosphorescence rates in fac-Ir(III)(ppy)3: a theoretical study involving multi-reference configuration interaction wavefunctions.
    Kleinschmidt M; van Wüllen C; Marian CM
    J Chem Phys; 2015 Mar; 142(9):094301. PubMed ID: 25747075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-Free Organic Phosphors toward Fast and Efficient Room-Temperature Phosphorescence.
    Shao W; Kim J
    Acc Chem Res; 2022 Jun; 55(11):1573-1585. PubMed ID: 35613040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.