These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37502771)

  • 1. Chemical Recycling of Flexible Polyurethane Foams by Aminolysis to Recover High-Quality Polyols.
    Grdadolnik M; Zdovc B; Drinčić A; Onder OC; Utroša P; Ramos SG; Ramos ED; Pahovnik D; Žagar E
    ACS Sustain Chem Eng; 2023 Jul; 11(29):10864-10873. PubMed ID: 37502771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into Chemical Recycling of Flexible Polyurethane Foams by Acidolysis.
    Grdadolnik M; Drinčić A; Oreški A; Onder OC; Utroša P; Pahovnik D; Žagar E
    ACS Sustain Chem Eng; 2022 Jan; 10(3):1323-1332. PubMed ID: 35096493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of End-Group Functionality of Propylene Oxide-Based Polyether Polyols Recovered from Polyurethane Foams by Chemical Recycling.
    Zdovc B; Grdadolnik M; Pahovnik D; Žagar E
    Macromolecules; 2023 May; 56(9):3374-3382. PubMed ID: 37181246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams.
    Amundarain I; Miguel-Fernández R; Asueta A; García-Fernández S; Arnaiz S
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization.
    Miguel-Fernández R; Amundarain I; Asueta A; García-Fernández S; Arnaiz S; Miazza NL; Montón E; Rodríguez-García B; Bianca-Benchea E
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyurethane foams from vegetable oil-based polyols: a review.
    Kaikade DS; Sabnis AS
    Polym Bull (Berl); 2023; 80(3):2239-2261. PubMed ID: 35310173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose-Based Polyurethane Foams of Low Flammability.
    Szpiłyk M; Lubczak R; Lubczak J
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Room-Temperature Preparation of Flexible Polyurethane Foams from Carbon Dioxide Based Poly(ether carbonate) Polyols with a Reduced Generation of Acetaldehyde.
    Jang JH; Ha JH; Kim I; Baik JH; Hong SC
    ACS Omega; 2019 May; 4(5):7944-7952. PubMed ID: 31459883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically Functionalized Cellulose Nanocrystals as Reactive Filler in Bio-Based Polyurethane Foams.
    Coccia F; Gryshchuk L; Moimare P; Bossa FL; Santillo C; Barak-Kulbak E; Verdolotti L; Boggioni L; Lama GC
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reprocessable Polyurethane Foams Using Acetoacetyl-Formed Amides.
    Kassem H; Imbernon L; Stricker L; Jonckheere L; Du Prez FE
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37917002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Polyurethane Foams from Epoxidized Vegetable Oils and a Bio-Based Diisocyanate.
    Cifarelli A; Boggioni L; Vignali A; Tritto I; Bertini F; Losio S
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33670627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams.
    Borowicz M; Isbrandt M; Paciorek-Sadowska J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient recycling pathway of bio-based composite polyurethane foams via sustainable diamine.
    Recupido F; Lama GC; Steffen S; Dreyer C; Seidlitz H; Russo V; Lavorgna M; De Luca Bossa F; Silvano S; Boggioni L; Verdolotti L
    Ecotoxicol Environ Saf; 2024 Jan; 269():115758. PubMed ID: 38128448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane Composites Recycling with Styrene-Acrylonitrile and Calcium Carbonate Recovery.
    Del Amo J; Iswar S; Vanbergen T; Borreguero AM; De Vos SDE; Verlent I; Willems J; Rodriguez Romero JF
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyurethane Foams: Past, Present, and Future.
    Gama NV; Ferreira A; Barros-Timmons A
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30262722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deamination of Polyols from the Glycolysis of Polyurethane.
    Donadini R; Boaretti C; Scopel L; Lorenzetti A; Modesti M
    Chemistry; 2024 Jan; 30(3):e202301919. PubMed ID: 37844012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress of Non-Isocyanate Polyurethane Foam and Their Challenges.
    El Khezraji S; Ben Youcef H; Belachemi L; Lopez Manchado MA; Verdejo R; Lahcini M
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production.
    Xue BL; Wen JL; Sun RC
    Materials (Basel); 2015 Feb; 8(2):586-599. PubMed ID: 28787959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyols and Polyurethane Foams Based on Water-Soluble Chitosan.
    Strzałka AM; Lubczak J
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of Circular Economy Principles in the Synthesis of Polyurethane Foams.
    Kurańska M; Leszczyńska M; Malewska E; Prociak A; Ryszkowska J
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.