These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37502841)

  • 1. Generalizability of foot-placement control strategies during unperturbed and perturbed gait.
    Liu C; Valero-Cuevas FJ; Finley JM
    bioRxiv; 2023 Jul; ():. PubMed ID: 37502841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalizability of foot placement control strategies during unperturbed and perturbed gait.
    Liu C; Valero-Cuevas FJ; Finley JM
    R Soc Open Sci; 2024 May; 11(5):231210. PubMed ID: 38699553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the effects of mediolateral surface and foot placement perturbations on balance control and response strategies during walking.
    Brough LG; Neptune RR
    Gait Posture; 2024 Feb; 108():313-319. PubMed ID: 38199090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-prioritization and balance recovery strategies used by young healthy adults during dual-task walking.
    Small GH; Neptune RR
    Gait Posture; 2022 Jun; 95():115-120. PubMed ID: 35472735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced center of pressure modulation elicits foot placement adjustments, but no additional trunk motion during anteroposterior-perturbed walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2018 Feb; 68():93-98. PubMed ID: 29317105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State-dependent corrective reactions for backward balance losses during human walking.
    Kagawa T; Ohta Y; Uno Y
    Hum Mov Sci; 2011 Dec; 30(6):1210-24. PubMed ID: 21704417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neuromechanical strategy for mediolateral foot placement in walking humans.
    Rankin BL; Buffo SK; Dean JC
    J Neurophysiol; 2014 Jul; 112(2):374-83. PubMed ID: 24790168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual muscle responses to mediolateral foot placement perturbations during walking.
    Brough LG; Neptune RR
    J Biomech; 2022 Aug; 141():111201. PubMed ID: 35764014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upward perturbations trigger a stumbling effect.
    Cano Porras D; Heimler B; Jacobs JV; Naor SK; Inzelberg R; Zeilig G; Plotnik M
    Hum Mov Sci; 2023 Apr; 88():103069. PubMed ID: 36871477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do kinematic metrics of walking balance adapt to perturbed optical flow?
    Thompson JD; Franz JR
    Hum Mov Sci; 2017 Aug; 54():34-40. PubMed ID: 28371662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular organization of balance control following perturbations during walking.
    Oliveira AS; Gizzi L; Kersting UG; Farina D
    J Neurophysiol; 2012 Oct; 108(7):1895-906. PubMed ID: 22773783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can optical flow perturbations detect walking balance impairment in people with multiple sclerosis?
    Selgrade BP; Meyer D; Sosnoff JJ; Franz JR
    PLoS One; 2020; 15(3):e0230202. PubMed ID: 32155225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foot Placement Modulation Diminishes for Perturbations Near Foot Contact.
    Vlutters M; Van Asseldonk EHF; van der Kooij H
    Front Bioeng Biotechnol; 2018; 6():48. PubMed ID: 29868570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical response to mediolateral foot-placement perturbations during walking.
    Brough LG; Klute GK; Neptune RR
    J Biomech; 2021 Feb; 116():110213. PubMed ID: 33465580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of human gait stability through foot placement.
    Bruijn SM; van Dieën JH
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29875279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Center-of-Mass Based foot Placement in Stumble Recovery.
    Eveld M; van der Kooij H; King S; Goldfarb M; Zelik K; van Asseldonk E
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of step width on balance control and response strategies during perturbed walking in healthy young adults.
    Molina LK; Small GH; Neptune RR
    J Biomech; 2023 Aug; 157():111731. PubMed ID: 37494856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Treadmill Speed and Perturbation Intensity on Selection of Balancing Strategies during Slow Walking Perturbed in the Frontal Plane.
    Matjačić Z; Zadravec M; Olenšek A
    Appl Bionics Biomech; 2019; 2019():1046459. PubMed ID: 31281413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sagittal-plane balance perturbations during very slow walking: Strategies for recovering linear and angular momentum.
    van Mierlo M; Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2023 May; 152():111580. PubMed ID: 37058767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.