These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 37502877)

  • 1. Error Fields: Personalized robotic movement training that augments one's more likely mistakes.
    Aghamohammadi NR; Bittmann MF; Klamroth-Marganska V; Riener R; Huang FC; Patton JL
    Res Sq; 2023 Jul; ():. PubMed ID: 37502877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors.
    Bouchard AE; Corriveau H; Milot MH
    Front Syst Neurosci; 2015; 9():52. PubMed ID: 25873868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration.
    Liu J; Cramer SC; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2006 Aug; 3():20. PubMed ID: 16945148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task.
    Marchal-Crespo L; Michels L; Jaeger L; López-Olóriz J; Riener R
    Front Neurosci; 2017; 11():526. PubMed ID: 29021739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Error-augmented bimanual therapy for stroke survivors.
    Abdollahi F; Corrigan M; Lazzaro EDC; Kenyon RV; Patton JL
    NeuroRehabilitation; 2018; 43(1):51-61. PubMed ID: 30040762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visuomotor learning enhanced by augmenting instantaneous trajectory error feedback during reaching.
    Patton JL; Wei YJ; Bajaj P; Scheidt RA
    PLoS One; 2013; 8(1):e46466. PubMed ID: 23382796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review.
    Liu LY; Li Y; Lamontagne A
    J Neuroeng Rehabil; 2018 Jul; 15(1):65. PubMed ID: 29973250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time flies when you are in a groove: using entrainment to mechanical resonance to teach a desired movement distorts the perception of the movement's timing.
    Zondervan DK; Duarte JE; Rowe JB; Reinkensmeyer DJ
    Exp Brain Res; 2014 Mar; 232(3):1057-70. PubMed ID: 24398898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual error augmentation enhances learning in three dimensions.
    Sharp I; Huang F; Patton J
    J Neuroeng Rehabil; 2011 Sep; 8():52. PubMed ID: 21888657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual error augmentation enhances learning in three dimensions.
    Sharp I; Huang FC; Patton JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5915-8. PubMed ID: 21096938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of robotic performance-based error-augmentation versus error-reduction training on the gait of healthy individuals.
    Kao PC; Srivastava S; Agrawal SK; Scholz JP
    Gait Posture; 2013 Jan; 37(1):113-20. PubMed ID: 22832470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of task-related continuous auditory feedback during learning of tracking motion exercises.
    Rosati G; Oscari F; Spagnol S; Avanzini F; Masiero S
    J Neuroeng Rehabil; 2012 Oct; 9():79. PubMed ID: 23046683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural circuits activated by error amplification and haptic guidance training techniques during performance of a timing-based motor task by healthy individuals.
    Milot MH; Marchal-Crespo L; Beaulieu LD; Reinkensmeyer DJ; Cramer SC
    Exp Brain Res; 2018 Nov; 236(11):3085-3099. PubMed ID: 30132040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement in Hand Trajectory of Reaching Movements by Error-Augmentation.
    Israely S; Leisman G; Carmeli E
    Adv Exp Med Biol; 2018; 1070():71-84. PubMed ID: 29564773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effectiveness of robotic training depends on motor task characteristics.
    Marchal-Crespo L; Rappo N; Riener R
    Exp Brain Res; 2017 Dec; 235(12):3799-3816. PubMed ID: 28983676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using visual feedback distortion to alter coordinated pinching patterns for robotic rehabilitation.
    Matsuoka Y; Brewer BR; Klatzky RL
    J Neuroeng Rehabil; 2007 May; 4():17. PubMed ID: 17537239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.