These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 37502928)
1. Distinct horizontal transfer mechanisms for type I and type V CRISPR-associated transposons. Hu K; Chia-Wei C; Wilke CO; Finkelstein IJ bioRxiv; 2023 Jul; ():. PubMed ID: 37502928 [TBL] [Abstract][Full Text] [Related]
2. Distinct horizontal transfer mechanisms for type I and type V CRISPR-associated transposons. Hu K; Chou CW; Wilke CO; Finkelstein IJ Nat Commun; 2024 Aug; 15(1):6653. PubMed ID: 39103341 [TBL] [Abstract][Full Text] [Related]
3. Metagenomic discovery of CRISPR-associated transposons. Rybarski JR; Hu K; Hill AM; Wilke CO; Finkelstein IJ Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34845024 [TBL] [Abstract][Full Text] [Related]
5. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Peters JE; Makarova KS; Shmakov S; Koonin EV Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7358-E7366. PubMed ID: 28811374 [TBL] [Abstract][Full Text] [Related]
6. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362 [TBL] [Abstract][Full Text] [Related]
7. Molecular mechanism for Tn7-like transposon recruitment by a type I-B CRISPR effector. Wang S; Gabel C; Siddique R; Klose T; Chang L Cell; 2023 Sep; 186(19):4204-4215.e19. PubMed ID: 37557170 [TBL] [Abstract][Full Text] [Related]
8. Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria. Hsieh SC; Peters JE Nucleic Acids Res; 2023 Jan; 51(2):765-782. PubMed ID: 36537206 [TBL] [Abstract][Full Text] [Related]
9. Multiple adaptations underly co-option of a CRISPR surveillance complex for RNA-guided DNA transposition. Park JU; Petassi MT; Hsieh SC; Mehrotra E; Schuler G; Budhathoki J; Truong VH; Thyme SB; Ke A; Kellogg EH; Peters JE Mol Cell; 2023 Jun; 83(11):1827-1838.e6. PubMed ID: 37267904 [TBL] [Abstract][Full Text] [Related]
10. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. Chylinski K; Le Rhun A; Charpentier E RNA Biol; 2013 May; 10(5):726-37. PubMed ID: 23563642 [TBL] [Abstract][Full Text] [Related]
11. Conformational landscape of the type V-K CRISPR-associated transposon integration assembly. Tenjo-Castaño F; Sofos N; Stutzke LS; Temperini P; Fuglsang A; Pape T; Mesa P; Montoya G Mol Cell; 2024 Jun; 84(12):2353-2367.e5. PubMed ID: 38834066 [TBL] [Abstract][Full Text] [Related]
12. Structural basis for the assembly of the type V CRISPR-associated transposon complex. Schmitz M; Querques I; Oberli S; Chanez C; Jinek M Cell; 2022 Dec; 185(26):4999-5010.e17. PubMed ID: 36435179 [TBL] [Abstract][Full Text] [Related]
13. A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii. Brendel J; Stoll B; Lange SJ; Sharma K; Lenz C; Stachler AE; Maier LK; Richter H; Nickel L; Schmitz RA; Randau L; Allers T; Urlaub H; Backofen R; Marchfelder A J Biol Chem; 2014 Mar; 289(10):7164-7177. PubMed ID: 24459147 [TBL] [Abstract][Full Text] [Related]
14. Insight into the molecular mechanism of the transposon-encoded type I-F CRISPR-Cas system. Alalmaie A; Diaf S; Khashan R J Genet Eng Biotechnol; 2023 May; 21(1):60. PubMed ID: 37191877 [TBL] [Abstract][Full Text] [Related]
15. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. McDonald ND; Regmi A; Morreale DP; Borowski JD; Boyd EF BMC Genomics; 2019 Feb; 20(1):105. PubMed ID: 30717668 [TBL] [Abstract][Full Text] [Related]
16. Guide RNA Categorization Enables Target Site Choice in Tn7-CRISPR-Cas Transposons. Petassi MT; Hsieh SC; Peters JE Cell; 2020 Dec; 183(7):1757-1771.e18. PubMed ID: 33271061 [TBL] [Abstract][Full Text] [Related]