These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37502928)

  • 21. Modularity and diversity of target selectors in Tn7 transposons.
    Faure G; Saito M; Benler S; Peng I; Wolf YI; Strecker J; Altae-Tran H; Neumann E; Li D; Makarova KS; Macrae RK; Koonin EV; Zhang F
    Mol Cell; 2023 Jun; 83(12):2122-2136.e10. PubMed ID: 37267947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of RNA Binding Partners of CRISPR-Cas Proteins in Prokaryotes Using RIP-Seq.
    Sharma S; Sharma CM
    Methods Mol Biol; 2022; 2404():111-133. PubMed ID: 34694606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specificities and functional coordination between the two Cas6 maturation endonucleases in
    Reimann V; Ziemann M; Li H; Zhu T; Behler J; Lu X; Hess WR
    RNA Biol; 2020 Oct; 17(10):1442-1453. PubMed ID: 32453626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1.
    Nickel L; Ulbricht A; Alkhnbashi OS; Förstner KU; Cassidy L; Weidenbach K; Backofen R; Schmitz RA
    RNA Biol; 2019 Apr; 16(4):492-503. PubMed ID: 30153081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires.
    Silas S; Makarova KS; Shmakov S; Páez-Espino D; Mohr G; Liu Y; Davison M; Roux S; Krishnamurthy SR; Fu BXH; Hansen LL; Wang D; Sullivan MB; Millard A; Clokie MR; Bhaya D; Lambowitz AM; Kyrpides NC; Koonin EV; Fire AZ
    mBio; 2017 Jul; 8(4):. PubMed ID: 28698278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Target site selection and remodelling by type V CRISPR-transposon systems.
    Querques I; Schmitz M; Oberli S; Chanez C; Jinek M
    Nature; 2021 Nov; 599(7885):497-502. PubMed ID: 34759315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple Origins and Specific Evolution of CRISPR/Cas9 Systems in Minimal Bacteria (
    Ipoutcha T; Tsarmpopoulos I; Talenton V; Gaspin C; Moisan A; Walker CA; Brownlie J; Blanchard A; Thebault P; Sirand-Pugnet P
    Front Microbiol; 2019; 10():2701. PubMed ID: 31824468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cargo Genes of Tn
    Benler S; Faure G; Altae-Tran H; Shmakov S; Zheng F; Koonin E
    mBio; 2021 Dec; 12(6):e0293821. PubMed ID: 34872347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome editing using CRISPR, CAST, and Fanzor systems.
    Song B; Bae S
    Mol Cells; 2024 Jul; 47(7):100086. PubMed ID: 38909984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate generation for endonucleases of CRISPR/cas systems.
    Zoephel J; Dwarakanath S; Richter H; Plagens A; Randau L
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 22986408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers.
    Luo ML; Jackson RN; Denny SR; Tokmina-Lukaszewska M; Maksimchuk KR; Lin W; Bothner B; Wiedenheft B; Beisel CL
    Nucleic Acids Res; 2016 Sep; 44(15):7385-94. PubMed ID: 27174938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA on the move: mechanisms, functions and applications of transposable elements.
    Schmitz M; Querques I
    FEBS Open Bio; 2024 Jan; 14(1):13-22. PubMed ID: 38041553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR transposons on the move.
    Mougiakos I; Beisel CL
    Cell Host Microbe; 2021 May; 29(5):675-677. PubMed ID: 33984272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system.
    Sokolowski RD; Graham S; White MF
    Nucleic Acids Res; 2014 Jun; 42(10):6532-41. PubMed ID: 24753403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system.
    Halpin-Healy TS; Klompe SE; Sternberg SH; Fernández IS
    Nature; 2020 Jan; 577(7789):271-274. PubMed ID: 31853065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus.
    Terns RM; Terns MP
    Biochem Soc Trans; 2013 Dec; 41(6):1416-21. PubMed ID: 24256230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus.
    Karvelis T; Gasiunas G; Miksys A; Barrangou R; Horvath P; Siksnys V
    RNA Biol; 2013 May; 10(5):841-51. PubMed ID: 23535272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transposons and CRISPR: Rewiring Gene Editing.
    Tenjo-Castaño F; Montoya G; Carabias A
    Biochemistry; 2023 Dec; 62(24):3521-3532. PubMed ID: 36130724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes.
    Plagens A; Richter H; Charpentier E; Randau L
    FEMS Microbiol Rev; 2015 May; 39(3):442-63. PubMed ID: 25934119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I-F systems.
    Almendros C; Guzmán NM; García-Martínez J; Mojica FJ
    Nat Microbiol; 2016 Jun; 1(8):16081. PubMed ID: 27573106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.