These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 37503682)

  • 1. Oxidoreductases and metal cofactors in the functioning of the earth.
    Hay Mele B; Monticelli M; Leone S; Bastoni D; Barosa B; Cascone M; Migliaccio F; Montemagno F; Ricciardelli A; Tonietti L; Rotundi A; Cordone A; Giovannelli D
    Essays Biochem; 2023 Aug; 67(4):653-670. PubMed ID: 37503682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanistic insights into different aspects of promiscuity in metalloenzymes.
    Tripathi A; Dubey KD
    Adv Protein Chem Struct Biol; 2024; 141():23-66. PubMed ID: 38960476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases.
    Kim JD; Senn S; Harel A; Jelen BI; Falkowski PG
    Philos Trans R Soc Lond B Biol Sci; 2013 Jul; 368(1622):20120257. PubMed ID: 23754810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal ions in biological catalysis: from enzyme databases to general principles.
    Andreini C; Bertini I; Cavallaro G; Holliday GL; Thornton JM
    J Biol Inorg Chem; 2008 Nov; 13(8):1205-18. PubMed ID: 18604568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary history of redox metal-binding domains across the tree of life.
    Harel A; Bromberg Y; Falkowski PG; Bhattacharya D
    Proc Natl Acad Sci U S A; 2014 May; 111(19):7042-7. PubMed ID: 24778258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function.
    Schmiedekamp A; Nanda V
    J Inorg Biochem; 2009 Jul; 103(7):1054-60. PubMed ID: 19501913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel metal sites in protein structures.
    Volbeda A; Fontecilla-Camps JC; Frey M
    Curr Opin Struct Biol; 1996 Dec; 6(6):804-12. PubMed ID: 8994881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial metalloenzymes constructed from hierarchically-assembled proteins.
    Ueno T; Tabe H; Tanaka Y
    Chem Asian J; 2013 Aug; 8(8):1646-60. PubMed ID: 23704077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases".
    Sharma KK; Singh D; Mohite SV; Williamson PR; Kennedy JF
    Int J Biol Macromol; 2023 Apr; 233():123534. PubMed ID: 36740121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic activity mastered by altering metal coordination spheres.
    Moura I; Pauleta SR; Moura JJ
    J Biol Inorg Chem; 2008 Nov; 13(8):1185-95. PubMed ID: 18719950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mysteries of metals in metalloenzymes.
    Valdez CE; Smith QA; Nechay MR; Alexandrova AN
    Acc Chem Res; 2014 Oct; 47(10):3110-7. PubMed ID: 25207938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal and redox modulation of cysteine protein function.
    Giles NM; Watts AB; Giles GI; Fry FH; Littlechild JA; Jacob C
    Chem Biol; 2003 Aug; 10(8):677-93. PubMed ID: 12954327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdenum-cofactor-containing enzymes: structure and mechanism.
    Kisker C; Schindelin H; Rees DC
    Annu Rev Biochem; 1997; 66():233-67. PubMed ID: 9242907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of metal selectivity and promiscuity in metalloenzymes.
    Eom H; Song WJ
    J Biol Inorg Chem; 2019 Jun; 24(4):517-531. PubMed ID: 31115763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design Strategies for Redox Active Metalloenzymes: Applications in Hydrogen Production.
    Alcala-Torano R; Sommer DJ; Bahrami Dizicheh Z; Ghirlanda G
    Methods Enzymol; 2016; 580():389-416. PubMed ID: 27586342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center.
    Cao Z; Hall MB
    J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New metal cofactors and recent metallocofactor insights.
    Hausinger RP
    Curr Opin Struct Biol; 2019 Dec; 59():1-8. PubMed ID: 30711735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.