BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37504121)

  • 21. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins.
    Alemasova EE; Lavrik OI
    Nucleic Acids Res; 2019 May; 47(8):3811-3827. PubMed ID: 30799503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insight into DNA substrate specificity of PARP1-catalysed DNA poly(ADP-ribosyl)ation.
    Matta E; Kiribayeva A; Khassenov B; Matkarimov BT; Ishchenko AA
    Sci Rep; 2020 Feb; 10(1):3699. PubMed ID: 32111879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly-ADP ribosylation in DNA damage response and cancer therapy.
    Hou WH; Chen SH; Yu X
    Mutat Res Rev Mutat Res; 2019; 780():82-91. PubMed ID: 31395352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Enigmatic Function of PARP1: From PARylation Activity to PAR Readers.
    Kamaletdinova T; Fanaei-Kahrani Z; Wang ZQ
    Cells; 2019 Dec; 8(12):. PubMed ID: 31842403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites.
    Altmeyer M; Messner S; Hassa PO; Fey M; Hottiger MO
    Nucleic Acids Res; 2009 Jun; 37(11):3723-38. PubMed ID: 19372272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly(ADP-ribose): PARadigms and PARadoxes.
    Bürkle A; Virág L
    Mol Aspects Med; 2013 Dec; 34(6):1046-65. PubMed ID: 23290998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ADP-ribose polymer depletion leads to nuclear Ctcf re-localization and chromatin rearrangement(1).
    Guastafierro T; Catizone A; Calabrese R; Zampieri M; Martella O; Bacalini MG; Reale A; Di Girolamo M; Miccheli M; Farrar D; Klenova E; Ciccarone F; Caiafa P
    Biochem J; 2013 Feb; 449(3):623-30. PubMed ID: 23116180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(ADP-Ribose) Polymerase 1: Cellular Pluripotency, Reprogramming, and Tumorogenesis.
    Jiang BH; Tseng WL; Li HY; Wang ML; Chang YL; Sung YJ; Chiou SH
    Int J Mol Sci; 2015 Jul; 16(7):15531-45. PubMed ID: 26184161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Single-Molecule Atomic Force Microscopy Study of PARP1 and PARP2 Recognition of Base Excision Repair DNA Intermediates.
    Sukhanova MV; Hamon L; Kutuzov MM; Joshi V; Abrakhi S; Dobra I; Curmi PA; Pastre D; Lavrik OI
    J Mol Biol; 2019 Jul; 431(15):2655-2673. PubMed ID: 31129062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of poly(ADP-ribosyl)ation, but not PARP1 itself, determines the cell fate in response to DNA damage in vitro and in vivo.
    Schuhwerk H; Bruhn C; Siniuk K; Min W; Erener S; Grigaravicius P; Krüger A; Ferrari E; Zubel T; Lazaro D; Monajembashi S; Kiesow K; Kroll T; Bürkle A; Mangerich A; Hottiger M; Wang ZQ
    Nucleic Acids Res; 2017 Nov; 45(19):11174-11192. PubMed ID: 28977496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways.
    Ghosh R; Roy S; Kamyab J; Danzter F; Franco S
    DNA Repair (Amst); 2016 Sep; 45():56-62. PubMed ID: 27373144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Poly(ADP-Ribose) polymerase 1 as a key regulator of DNA repair].
    Khodyreva SN; Lavrik OI
    Mol Biol (Mosk); 2016; 50(4):655-673. PubMed ID: 27668604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis.
    Meyer-Ficca ML; Lonchar JD; Ihara M; Meistrich ML; Austin CA; Meyer RG
    Biol Reprod; 2011 May; 84(5):900-9. PubMed ID: 21228215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ENPP1 processes protein ADP-ribosylation in vitro.
    Palazzo L; Daniels CM; Nettleship JE; Rahman N; McPherson RL; Ong SE; Kato K; Nureki O; Leung AK; Ahel I
    FEBS J; 2016 Sep; 283(18):3371-88. PubMed ID: 27406238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of biotinylated poly(ADP-ribose) for studies on poly(ADP-ribose)-protein interaction.
    Narendja FM; Sauermann G
    Anal Biochem; 1994 Aug; 220(2):415-9. PubMed ID: 7978287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PARPing for balance in the homeostasis of poly(ADP-ribosyl)ation.
    Schuhwerk H; Atteya R; Siniuk K; Wang ZQ
    Semin Cell Dev Biol; 2017 Mar; 63():81-91. PubMed ID: 27664469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly(ADP-ribose)-mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function.
    Fischer JM; Popp O; Gebhard D; Veith S; Fischbach A; Beneke S; Leitenstorfer A; Bergemann J; Scheffner M; Ferrando-May E; Mangerich A; Bürkle A
    FEBS J; 2014 Aug; 281(16):3625-41. PubMed ID: 24953096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A ribose-functionalized NAD
    Zhang XN; Cheng Q; Chen J; Lam AT; Lu Y; Dai Z; Pei H; Evdokimov NM; Louie SG; Zhang Y
    Nat Commun; 2019 Sep; 10(1):4196. PubMed ID: 31519936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biotin induced fluorescence enhancement in resonance energy transfer and application for bioassay.
    Hu S; Yang H; Cai R; Liu Z; Yang X
    Talanta; 2009 Dec; 80(2):454-8. PubMed ID: 19836503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional Role of ADP-Ribosyl-Acceptor Hydrolase 3 in poly(ADP-Ribose) Polymerase-1 Response to Oxidative Stress.
    Mashimo M; Moss J
    Curr Protein Pept Sci; 2016; 17(7):633-640. PubMed ID: 27090906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.