BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37504153)

  • 1. Investigation of the Impact of Hydrogen Bonding Degree in Long Single-Stranded DNA (ssDNA) Generated with Dual Rolling Circle Amplification (RCA) on the Preparation and Performance of DNA Hydrogels.
    Wang X; Wang H; Zhang H; Yang T; Zhao B; Yan J
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fishing unfunctionalized SERS tags with DNA hydrogel network generated by ligation-rolling circle amplification for simple and ultrasensitive detection of kanamycin.
    Chen Q; Tian R; Liu G; Wen Y; Bian X; Luan D; Wang H; Lai K; Yan J
    Biosens Bioelectron; 2022 Jul; 207():114187. PubMed ID: 35325717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rolling circle amplification (RCA)-based DNA hydrogel.
    Yao C; Zhang R; Tang J; Yang D
    Nat Protoc; 2021 Dec; 16(12):5460-5483. PubMed ID: 34716450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Hydrogel with Tunable pH-Responsive Properties Produced by Rolling Circle Amplification.
    Xu W; Huang Y; Zhao H; Li P; Liu G; Li J; Zhu C; Tian L
    Chemistry; 2017 Dec; 23(72):18276-18281. PubMed ID: 29071753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of Rolling Circle Amplification-Produced Ultralong Single-Stranded DNA to Construct Biofunctional DNA Materials.
    Tang J; Liang A; Yao C; Yang D
    Chemistry; 2023 Feb; 29(9):e202202673. PubMed ID: 36263767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel aptasensor based on DNA hydrogel for sensitive visual detection of ochratoxin A.
    Hao L; Liu X; Xu S; An F; Gu H; Xu F
    Mikrochim Acta; 2021 Oct; 188(11):395. PubMed ID: 34709464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodic assembly of nanospecies on repetitive DNA sequences generated on gold nanoparticles by rolling circle amplification.
    Zhao W; Brook MA; Li Y
    Methods Mol Biol; 2008; 474():79-90. PubMed ID: 19031062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Step Printable Hydrogel Microarray Integrating Long-Chain DNA for the Discriminative and Size-Specific Sensing of Nucleic Acids.
    Pikula M; Ali MM; Filipe C; Hoare T
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2360-2370. PubMed ID: 33411496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and Biomedical Applications of "Polymer-Like" Nucleic Acids Enzymatically Produced by Rolling Circle Amplification.
    Li J; Lin L; Yu J; Zhai S; Liu G; Tian L
    ACS Appl Bio Mater; 2019 Oct; 2(10):4106-4120. PubMed ID: 35021425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of rolling circle amplification-based DNA nanostructures for biomedical applications.
    Xu Y; Lv Z; Yao C; Yang D
    Biomater Sci; 2022 Jun; 10(12):3054-3061. PubMed ID: 35535967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunodetection and counting of circulating tumor cells (HepG2) by combining gold nanoparticle labeling, rolling circle amplification and ICP-MS detection of gold.
    Li X; Chen B; He M; Hu B
    Mikrochim Acta; 2019 May; 186(6):344. PubMed ID: 31076917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lamb wave-based molecular diagnosis using DNA hydrogel formation by rolling circle amplification (RCA) process.
    Nam J; Jang WS; Kim J; Lee H; Lim CS
    Biosens Bioelectron; 2019 Oct; 142():111496. PubMed ID: 31302395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient amplification of self-gelling polypod-like structured DNA by rolling circle amplification and enzymatic digestion.
    Yata T; Takahashi Y; Tan M; Hidaka K; Sugiyama H; Endo M; Takakura Y; Nishikawa M
    Sci Rep; 2015 Oct; 5():14979. PubMed ID: 26462616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications.
    Li C; Wang Y; Li PF; Fu Q
    Acta Biomater; 2023 Apr; 160():1-13. PubMed ID: 36764595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fluorescent DNA Hydrogel Aptasensor Based on the Self-Assembly of Rolling Circle Amplification Products for Sensitive Detection of Ochratoxin A.
    Hao L; Wang W; Shen X; Wang S; Li Q; An F; Wu S
    J Agric Food Chem; 2020 Jan; 68(1):369-375. PubMed ID: 31829586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor.
    Xiang Y; Zhu X; Huang Q; Zheng J; Fu W
    Biosens Bioelectron; 2015 Apr; 66():512-9. PubMed ID: 25500527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification.
    Reiss E; Hölzel R; Bier FF
    Methods Mol Biol; 2011; 749():151-68. PubMed ID: 21674371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin.
    Du Y; Zhou Y; Wen Y; Bian X; Xie Y; Zhang W; Liu G; Yan J
    Mikrochim Acta; 2019 Nov; 186(12):840. PubMed ID: 31768650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pure DNA hydrogel with stable catalytic ability produced by one-step rolling circle amplification.
    Huang Y; Xu W; Liu G; Tian L
    Chem Commun (Camb); 2017 Mar; 53(21):3038-3041. PubMed ID: 28239729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.